Principles and methods of bio detoxification of cyanide contaminants

Cyanide is a known toxic chemical compound that has an adverse effect on living organisms. Nonetheless, it is one of the active reagents in industries such as mining, pharmaceutical, cosmetics, and food processing companies worldwide. The beneficiation of gold and other precious metals from ore gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of material cycles and waste management 2020-07, Vol.22 (4), p.939-954
Hauptverfasser: Cosmos, Anning, Erdenekhuyag, Bat-Oyun, Yao, Geng, Li, Huijuan, Zhao, Jinggang, Laijun, Wang, Lyu, Xianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 954
container_issue 4
container_start_page 939
container_title Journal of material cycles and waste management
container_volume 22
creator Cosmos, Anning
Erdenekhuyag, Bat-Oyun
Yao, Geng
Li, Huijuan
Zhao, Jinggang
Laijun, Wang
Lyu, Xianjun
description Cyanide is a known toxic chemical compound that has an adverse effect on living organisms. Nonetheless, it is one of the active reagents in industries such as mining, pharmaceutical, cosmetics, and food processing companies worldwide. The beneficiation of gold and other precious metals from ore generates great amount of cyanide-bearing contaminants, which is released into the environment. The abundance of cyanide contaminants from these industries have created public health concern since the inception of metal extraction from ore. There are strict regulations on the production, transportation, utilization, and disposal of cyanide-bearing contaminants worldwide. The conventional treatment of cyanide waste is either chemical or physical process. The use of these treatment processes has certain pitfalls like operational challenges, an increase in capital cost, and generation of secondary waste. A number of microorganisms have the potential to utilize cyanide as nitrogen and carbon source and transform it into ammonia and carbon dioxide. Biodetoxification might be efficiently, economically and environmentally safe to detoxify cyanide in contaminants and attractive alternative to conventional detoxification method like chemical or physical. This paper reviews the principles and methods of biodetoxification of cyanide contaminants found in the ecosystem.
doi_str_mv 10.1007/s10163-020-01013-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2414911732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414911732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-4556e318d3229b17bb52022dbc3f647179ac01527d2c71bce24679c8bfc98cb73</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdTTnJDOZWUq9QkEXug5JJqMpbVKTKejbmzqCO1fn5_Bf4CPkHNglMCavMjBoOGXIKCuS0-aAzKABoC2iPCxa8JaKrpbH5CTnFWPYMS5n5OY5-WD9du1ypUNfbdz4HvtcxaEyPla9G-OnH7zVo49h_7VfOvjeVTaGUW980GHMp-Ro0Ovszn7vnLze3b4sHujy6f5xcb2kltftSEVdN45D23PEzoA0pkaG2BvLh0ZIkJ22DGqUPVoJxjoUjexsawbbtdZIPicXU-82xY-dy6NaxV0KZVKhANEBSI7FhZPLpphzcoPaJr_R6UsBU3taaqKlCi31Q0s1JcSnUC7m8ObSX_U_qW-5bGwv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414911732</pqid></control><display><type>article</type><title>Principles and methods of bio detoxification of cyanide contaminants</title><source>SpringerLink Journals</source><creator>Cosmos, Anning ; Erdenekhuyag, Bat-Oyun ; Yao, Geng ; Li, Huijuan ; Zhao, Jinggang ; Laijun, Wang ; Lyu, Xianjun</creator><creatorcontrib>Cosmos, Anning ; Erdenekhuyag, Bat-Oyun ; Yao, Geng ; Li, Huijuan ; Zhao, Jinggang ; Laijun, Wang ; Lyu, Xianjun</creatorcontrib><description>Cyanide is a known toxic chemical compound that has an adverse effect on living organisms. Nonetheless, it is one of the active reagents in industries such as mining, pharmaceutical, cosmetics, and food processing companies worldwide. The beneficiation of gold and other precious metals from ore generates great amount of cyanide-bearing contaminants, which is released into the environment. The abundance of cyanide contaminants from these industries have created public health concern since the inception of metal extraction from ore. There are strict regulations on the production, transportation, utilization, and disposal of cyanide-bearing contaminants worldwide. The conventional treatment of cyanide waste is either chemical or physical process. The use of these treatment processes has certain pitfalls like operational challenges, an increase in capital cost, and generation of secondary waste. A number of microorganisms have the potential to utilize cyanide as nitrogen and carbon source and transform it into ammonia and carbon dioxide. Biodetoxification might be efficiently, economically and environmentally safe to detoxify cyanide in contaminants and attractive alternative to conventional detoxification method like chemical or physical. This paper reviews the principles and methods of biodetoxification of cyanide contaminants found in the ecosystem.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-020-01013-6</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Ammonia ; Beneficiation ; Capital costs ; Carbon ; Carbon dioxide ; Carbon sources ; Chemical compounds ; Chlorine ; Civil Engineering ; Contaminants ; Cosmetics ; Cyanide process ; Cyanides ; Detoxification ; Efficiency ; Engineering ; Environmental Management ; Food processing ; Food processing industry ; Heavy metals ; Iron ; Metals ; Microorganisms ; Mining ; Mining accidents &amp; safety ; Nitrogen ; Principles ; Public health ; Reagents ; Review ; Waste disposal ; Waste Management/Waste Technology</subject><ispartof>Journal of material cycles and waste management, 2020-07, Vol.22 (4), p.939-954</ispartof><rights>Springer Japan KK, part of Springer Nature 2020</rights><rights>Springer Japan KK, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-4556e318d3229b17bb52022dbc3f647179ac01527d2c71bce24679c8bfc98cb73</citedby><cites>FETCH-LOGICAL-c358t-4556e318d3229b17bb52022dbc3f647179ac01527d2c71bce24679c8bfc98cb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-020-01013-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-020-01013-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cosmos, Anning</creatorcontrib><creatorcontrib>Erdenekhuyag, Bat-Oyun</creatorcontrib><creatorcontrib>Yao, Geng</creatorcontrib><creatorcontrib>Li, Huijuan</creatorcontrib><creatorcontrib>Zhao, Jinggang</creatorcontrib><creatorcontrib>Laijun, Wang</creatorcontrib><creatorcontrib>Lyu, Xianjun</creatorcontrib><title>Principles and methods of bio detoxification of cyanide contaminants</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>Cyanide is a known toxic chemical compound that has an adverse effect on living organisms. Nonetheless, it is one of the active reagents in industries such as mining, pharmaceutical, cosmetics, and food processing companies worldwide. The beneficiation of gold and other precious metals from ore generates great amount of cyanide-bearing contaminants, which is released into the environment. The abundance of cyanide contaminants from these industries have created public health concern since the inception of metal extraction from ore. There are strict regulations on the production, transportation, utilization, and disposal of cyanide-bearing contaminants worldwide. The conventional treatment of cyanide waste is either chemical or physical process. The use of these treatment processes has certain pitfalls like operational challenges, an increase in capital cost, and generation of secondary waste. A number of microorganisms have the potential to utilize cyanide as nitrogen and carbon source and transform it into ammonia and carbon dioxide. Biodetoxification might be efficiently, economically and environmentally safe to detoxify cyanide in contaminants and attractive alternative to conventional detoxification method like chemical or physical. This paper reviews the principles and methods of biodetoxification of cyanide contaminants found in the ecosystem.</description><subject>Ammonia</subject><subject>Beneficiation</subject><subject>Capital costs</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon sources</subject><subject>Chemical compounds</subject><subject>Chlorine</subject><subject>Civil Engineering</subject><subject>Contaminants</subject><subject>Cosmetics</subject><subject>Cyanide process</subject><subject>Cyanides</subject><subject>Detoxification</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Food processing</subject><subject>Food processing industry</subject><subject>Heavy metals</subject><subject>Iron</subject><subject>Metals</subject><subject>Microorganisms</subject><subject>Mining</subject><subject>Mining accidents &amp; safety</subject><subject>Nitrogen</subject><subject>Principles</subject><subject>Public health</subject><subject>Reagents</subject><subject>Review</subject><subject>Waste disposal</subject><subject>Waste Management/Waste Technology</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdTTnJDOZWUq9QkEXug5JJqMpbVKTKejbmzqCO1fn5_Bf4CPkHNglMCavMjBoOGXIKCuS0-aAzKABoC2iPCxa8JaKrpbH5CTnFWPYMS5n5OY5-WD9du1ypUNfbdz4HvtcxaEyPla9G-OnH7zVo49h_7VfOvjeVTaGUW980GHMp-Ro0Ovszn7vnLze3b4sHujy6f5xcb2kltftSEVdN45D23PEzoA0pkaG2BvLh0ZIkJ22DGqUPVoJxjoUjexsawbbtdZIPicXU-82xY-dy6NaxV0KZVKhANEBSI7FhZPLpphzcoPaJr_R6UsBU3taaqKlCi31Q0s1JcSnUC7m8ObSX_U_qW-5bGwv</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Cosmos, Anning</creator><creator>Erdenekhuyag, Bat-Oyun</creator><creator>Yao, Geng</creator><creator>Li, Huijuan</creator><creator>Zhao, Jinggang</creator><creator>Laijun, Wang</creator><creator>Lyu, Xianjun</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>M0C</scope><scope>M2P</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20200701</creationdate><title>Principles and methods of bio detoxification of cyanide contaminants</title><author>Cosmos, Anning ; Erdenekhuyag, Bat-Oyun ; Yao, Geng ; Li, Huijuan ; Zhao, Jinggang ; Laijun, Wang ; Lyu, Xianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-4556e318d3229b17bb52022dbc3f647179ac01527d2c71bce24679c8bfc98cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Beneficiation</topic><topic>Capital costs</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon sources</topic><topic>Chemical compounds</topic><topic>Chlorine</topic><topic>Civil Engineering</topic><topic>Contaminants</topic><topic>Cosmetics</topic><topic>Cyanide process</topic><topic>Cyanides</topic><topic>Detoxification</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Food processing</topic><topic>Food processing industry</topic><topic>Heavy metals</topic><topic>Iron</topic><topic>Metals</topic><topic>Microorganisms</topic><topic>Mining</topic><topic>Mining accidents &amp; safety</topic><topic>Nitrogen</topic><topic>Principles</topic><topic>Public health</topic><topic>Reagents</topic><topic>Review</topic><topic>Waste disposal</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cosmos, Anning</creatorcontrib><creatorcontrib>Erdenekhuyag, Bat-Oyun</creatorcontrib><creatorcontrib>Yao, Geng</creatorcontrib><creatorcontrib>Li, Huijuan</creatorcontrib><creatorcontrib>Zhao, Jinggang</creatorcontrib><creatorcontrib>Laijun, Wang</creatorcontrib><creatorcontrib>Lyu, Xianjun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cosmos, Anning</au><au>Erdenekhuyag, Bat-Oyun</au><au>Yao, Geng</au><au>Li, Huijuan</au><au>Zhao, Jinggang</au><au>Laijun, Wang</au><au>Lyu, Xianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principles and methods of bio detoxification of cyanide contaminants</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>939</spage><epage>954</epage><pages>939-954</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>Cyanide is a known toxic chemical compound that has an adverse effect on living organisms. Nonetheless, it is one of the active reagents in industries such as mining, pharmaceutical, cosmetics, and food processing companies worldwide. The beneficiation of gold and other precious metals from ore generates great amount of cyanide-bearing contaminants, which is released into the environment. The abundance of cyanide contaminants from these industries have created public health concern since the inception of metal extraction from ore. There are strict regulations on the production, transportation, utilization, and disposal of cyanide-bearing contaminants worldwide. The conventional treatment of cyanide waste is either chemical or physical process. The use of these treatment processes has certain pitfalls like operational challenges, an increase in capital cost, and generation of secondary waste. A number of microorganisms have the potential to utilize cyanide as nitrogen and carbon source and transform it into ammonia and carbon dioxide. Biodetoxification might be efficiently, economically and environmentally safe to detoxify cyanide in contaminants and attractive alternative to conventional detoxification method like chemical or physical. This paper reviews the principles and methods of biodetoxification of cyanide contaminants found in the ecosystem.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-020-01013-6</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-4957
ispartof Journal of material cycles and waste management, 2020-07, Vol.22 (4), p.939-954
issn 1438-4957
1611-8227
language eng
recordid cdi_proquest_journals_2414911732
source SpringerLink Journals
subjects Ammonia
Beneficiation
Capital costs
Carbon
Carbon dioxide
Carbon sources
Chemical compounds
Chlorine
Civil Engineering
Contaminants
Cosmetics
Cyanide process
Cyanides
Detoxification
Efficiency
Engineering
Environmental Management
Food processing
Food processing industry
Heavy metals
Iron
Metals
Microorganisms
Mining
Mining accidents & safety
Nitrogen
Principles
Public health
Reagents
Review
Waste disposal
Waste Management/Waste Technology
title Principles and methods of bio detoxification of cyanide contaminants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principles%20and%20methods%20of%20bio%20detoxification%20of%20cyanide%20contaminants&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Cosmos,%20Anning&rft.date=2020-07-01&rft.volume=22&rft.issue=4&rft.spage=939&rft.epage=954&rft.pages=939-954&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-020-01013-6&rft_dat=%3Cproquest_cross%3E2414911732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414911732&rft_id=info:pmid/&rfr_iscdi=true