3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint
Pipe inspection is a critical task for many industries and infrastructure of a city. The 3D information of a pipe can be used for revealing the deformation of the pipe surface and position of the camera during the inspection. In this paper, we propose a 3D pipe reconstruction system using sequential...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | kagami, Sho Taira, Hajime Miyashita, Naoyuki Torii, Akihiko Okutomi, Masatoshi |
description | Pipe inspection is a critical task for many industries and infrastructure of a city. The 3D information of a pipe can be used for revealing the deformation of the pipe surface and position of the camera during the inspection. In this paper, we propose a 3D pipe reconstruction system using sequential images captured by a monocular endoscopic camera. Our work extends a state-of-the-art incremental Structure-from-Motion (SfM) method to incorporate prior constraints given by the target shape into bundle adjustment (BA). Using this constraint, we can minimize the scale-drift that is the general problem in SfM. Moreover, our method can reconstruct a pipe network composed of multiple parts including straight pipes, elbows, and tees. In the experiments, we show that the proposed system enables more accurate and robust pipe mapping from a monocular camera in comparison with existing state-of-the-art methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2414908400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414908400</sourcerecordid><originalsourceid>FETCH-proquest_journals_24149084003</originalsourceid><addsrcrecordid>eNqNjc0KwjAQhIMgKOo7LHguxKT-XW0VPShivUtIV0ytm5qkiCdf3aI-gKcZ5htmWqwrpBxFs1iIDht4X3DOxWQqxmPZZS-Zwt5UCDsMD-uucEBtyQdX62AswUJ5zKEx2SeqHcLZ2Rts7Qc_TLjAhrTDG1JQJSSWjIbsoprJFAN-VxTlkDxLQ7kz-ttqLpSh0Gftsyo9Dn7aY8PV8piso8rZe40-nApbO2rQScSjeM5nMefyv9YbnRpQPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414908400</pqid></control><display><type>article</type><title>3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint</title><source>Free E- Journals</source><creator>kagami, Sho ; Taira, Hajime ; Miyashita, Naoyuki ; Torii, Akihiko ; Okutomi, Masatoshi</creator><creatorcontrib>kagami, Sho ; Taira, Hajime ; Miyashita, Naoyuki ; Torii, Akihiko ; Okutomi, Masatoshi</creatorcontrib><description>Pipe inspection is a critical task for many industries and infrastructure of a city. The 3D information of a pipe can be used for revealing the deformation of the pipe surface and position of the camera during the inspection. In this paper, we propose a 3D pipe reconstruction system using sequential images captured by a monocular endoscopic camera. Our work extends a state-of-the-art incremental Structure-from-Motion (SfM) method to incorporate prior constraints given by the target shape into bundle adjustment (BA). Using this constraint, we can minimize the scale-drift that is the general problem in SfM. Moreover, our method can reconstruct a pipe network composed of multiple parts including straight pipes, elbows, and tees. In the experiments, we show that the proposed system enables more accurate and robust pipe mapping from a monocular camera in comparison with existing state-of-the-art methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bundle adjustment ; Cameras ; Image reconstruction ; Inspection ; Mapping ; Pipe bends</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>kagami, Sho</creatorcontrib><creatorcontrib>Taira, Hajime</creatorcontrib><creatorcontrib>Miyashita, Naoyuki</creatorcontrib><creatorcontrib>Torii, Akihiko</creatorcontrib><creatorcontrib>Okutomi, Masatoshi</creatorcontrib><title>3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint</title><title>arXiv.org</title><description>Pipe inspection is a critical task for many industries and infrastructure of a city. The 3D information of a pipe can be used for revealing the deformation of the pipe surface and position of the camera during the inspection. In this paper, we propose a 3D pipe reconstruction system using sequential images captured by a monocular endoscopic camera. Our work extends a state-of-the-art incremental Structure-from-Motion (SfM) method to incorporate prior constraints given by the target shape into bundle adjustment (BA). Using this constraint, we can minimize the scale-drift that is the general problem in SfM. Moreover, our method can reconstruct a pipe network composed of multiple parts including straight pipes, elbows, and tees. In the experiments, we show that the proposed system enables more accurate and robust pipe mapping from a monocular camera in comparison with existing state-of-the-art methods.</description><subject>Bundle adjustment</subject><subject>Cameras</subject><subject>Image reconstruction</subject><subject>Inspection</subject><subject>Mapping</subject><subject>Pipe bends</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjc0KwjAQhIMgKOo7LHguxKT-XW0VPShivUtIV0ytm5qkiCdf3aI-gKcZ5htmWqwrpBxFs1iIDht4X3DOxWQqxmPZZS-Zwt5UCDsMD-uucEBtyQdX62AswUJ5zKEx2SeqHcLZ2Rts7Qc_TLjAhrTDG1JQJSSWjIbsoprJFAN-VxTlkDxLQ7kz-ttqLpSh0Gftsyo9Dn7aY8PV8piso8rZe40-nApbO2rQScSjeM5nMefyv9YbnRpQPA</recordid><startdate>20200703</startdate><enddate>20200703</enddate><creator>kagami, Sho</creator><creator>Taira, Hajime</creator><creator>Miyashita, Naoyuki</creator><creator>Torii, Akihiko</creator><creator>Okutomi, Masatoshi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200703</creationdate><title>3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint</title><author>kagami, Sho ; Taira, Hajime ; Miyashita, Naoyuki ; Torii, Akihiko ; Okutomi, Masatoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24149084003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bundle adjustment</topic><topic>Cameras</topic><topic>Image reconstruction</topic><topic>Inspection</topic><topic>Mapping</topic><topic>Pipe bends</topic><toplevel>online_resources</toplevel><creatorcontrib>kagami, Sho</creatorcontrib><creatorcontrib>Taira, Hajime</creatorcontrib><creatorcontrib>Miyashita, Naoyuki</creatorcontrib><creatorcontrib>Torii, Akihiko</creatorcontrib><creatorcontrib>Okutomi, Masatoshi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>kagami, Sho</au><au>Taira, Hajime</au><au>Miyashita, Naoyuki</au><au>Torii, Akihiko</au><au>Okutomi, Masatoshi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint</atitle><jtitle>arXiv.org</jtitle><date>2020-07-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Pipe inspection is a critical task for many industries and infrastructure of a city. The 3D information of a pipe can be used for revealing the deformation of the pipe surface and position of the camera during the inspection. In this paper, we propose a 3D pipe reconstruction system using sequential images captured by a monocular endoscopic camera. Our work extends a state-of-the-art incremental Structure-from-Motion (SfM) method to incorporate prior constraints given by the target shape into bundle adjustment (BA). Using this constraint, we can minimize the scale-drift that is the general problem in SfM. Moreover, our method can reconstruct a pipe network composed of multiple parts including straight pipes, elbows, and tees. In the experiments, we show that the proposed system enables more accurate and robust pipe mapping from a monocular camera in comparison with existing state-of-the-art methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2414908400 |
source | Free E- Journals |
subjects | Bundle adjustment Cameras Image reconstruction Inspection Mapping Pipe bends |
title | 3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=3D%20Pipe%20Network%20Reconstruction%20Based%20on%20Structure%20from%20Motion%20with%20Incremental%20Conic%20Shape%20Detection%20and%20Cylindrical%20Constraint&rft.jtitle=arXiv.org&rft.au=kagami,%20Sho&rft.date=2020-07-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2414908400%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414908400&rft_id=info:pmid/&rfr_iscdi=true |