3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint

Pipe inspection is a critical task for many industries and infrastructure of a city. The 3D information of a pipe can be used for revealing the deformation of the pipe surface and position of the camera during the inspection. In this paper, we propose a 3D pipe reconstruction system using sequential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-07
Hauptverfasser: kagami, Sho, Taira, Hajime, Miyashita, Naoyuki, Torii, Akihiko, Okutomi, Masatoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator kagami, Sho
Taira, Hajime
Miyashita, Naoyuki
Torii, Akihiko
Okutomi, Masatoshi
description Pipe inspection is a critical task for many industries and infrastructure of a city. The 3D information of a pipe can be used for revealing the deformation of the pipe surface and position of the camera during the inspection. In this paper, we propose a 3D pipe reconstruction system using sequential images captured by a monocular endoscopic camera. Our work extends a state-of-the-art incremental Structure-from-Motion (SfM) method to incorporate prior constraints given by the target shape into bundle adjustment (BA). Using this constraint, we can minimize the scale-drift that is the general problem in SfM. Moreover, our method can reconstruct a pipe network composed of multiple parts including straight pipes, elbows, and tees. In the experiments, we show that the proposed system enables more accurate and robust pipe mapping from a monocular camera in comparison with existing state-of-the-art methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2414908400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414908400</sourcerecordid><originalsourceid>FETCH-proquest_journals_24149084003</originalsourceid><addsrcrecordid>eNqNjc0KwjAQhIMgKOo7LHguxKT-XW0VPShivUtIV0ytm5qkiCdf3aI-gKcZ5htmWqwrpBxFs1iIDht4X3DOxWQqxmPZZS-Zwt5UCDsMD-uucEBtyQdX62AswUJ5zKEx2SeqHcLZ2Rts7Qc_TLjAhrTDG1JQJSSWjIbsoprJFAN-VxTlkDxLQ7kz-ttqLpSh0Gftsyo9Dn7aY8PV8piso8rZe40-nApbO2rQScSjeM5nMefyv9YbnRpQPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414908400</pqid></control><display><type>article</type><title>3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint</title><source>Free E- Journals</source><creator>kagami, Sho ; Taira, Hajime ; Miyashita, Naoyuki ; Torii, Akihiko ; Okutomi, Masatoshi</creator><creatorcontrib>kagami, Sho ; Taira, Hajime ; Miyashita, Naoyuki ; Torii, Akihiko ; Okutomi, Masatoshi</creatorcontrib><description>Pipe inspection is a critical task for many industries and infrastructure of a city. The 3D information of a pipe can be used for revealing the deformation of the pipe surface and position of the camera during the inspection. In this paper, we propose a 3D pipe reconstruction system using sequential images captured by a monocular endoscopic camera. Our work extends a state-of-the-art incremental Structure-from-Motion (SfM) method to incorporate prior constraints given by the target shape into bundle adjustment (BA). Using this constraint, we can minimize the scale-drift that is the general problem in SfM. Moreover, our method can reconstruct a pipe network composed of multiple parts including straight pipes, elbows, and tees. In the experiments, we show that the proposed system enables more accurate and robust pipe mapping from a monocular camera in comparison with existing state-of-the-art methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bundle adjustment ; Cameras ; Image reconstruction ; Inspection ; Mapping ; Pipe bends</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>kagami, Sho</creatorcontrib><creatorcontrib>Taira, Hajime</creatorcontrib><creatorcontrib>Miyashita, Naoyuki</creatorcontrib><creatorcontrib>Torii, Akihiko</creatorcontrib><creatorcontrib>Okutomi, Masatoshi</creatorcontrib><title>3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint</title><title>arXiv.org</title><description>Pipe inspection is a critical task for many industries and infrastructure of a city. The 3D information of a pipe can be used for revealing the deformation of the pipe surface and position of the camera during the inspection. In this paper, we propose a 3D pipe reconstruction system using sequential images captured by a monocular endoscopic camera. Our work extends a state-of-the-art incremental Structure-from-Motion (SfM) method to incorporate prior constraints given by the target shape into bundle adjustment (BA). Using this constraint, we can minimize the scale-drift that is the general problem in SfM. Moreover, our method can reconstruct a pipe network composed of multiple parts including straight pipes, elbows, and tees. In the experiments, we show that the proposed system enables more accurate and robust pipe mapping from a monocular camera in comparison with existing state-of-the-art methods.</description><subject>Bundle adjustment</subject><subject>Cameras</subject><subject>Image reconstruction</subject><subject>Inspection</subject><subject>Mapping</subject><subject>Pipe bends</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjc0KwjAQhIMgKOo7LHguxKT-XW0VPShivUtIV0ytm5qkiCdf3aI-gKcZ5htmWqwrpBxFs1iIDht4X3DOxWQqxmPZZS-Zwt5UCDsMD-uucEBtyQdX62AswUJ5zKEx2SeqHcLZ2Rts7Qc_TLjAhrTDG1JQJSSWjIbsoprJFAN-VxTlkDxLQ7kz-ttqLpSh0Gftsyo9Dn7aY8PV8piso8rZe40-nApbO2rQScSjeM5nMefyv9YbnRpQPA</recordid><startdate>20200703</startdate><enddate>20200703</enddate><creator>kagami, Sho</creator><creator>Taira, Hajime</creator><creator>Miyashita, Naoyuki</creator><creator>Torii, Akihiko</creator><creator>Okutomi, Masatoshi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200703</creationdate><title>3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint</title><author>kagami, Sho ; Taira, Hajime ; Miyashita, Naoyuki ; Torii, Akihiko ; Okutomi, Masatoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24149084003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bundle adjustment</topic><topic>Cameras</topic><topic>Image reconstruction</topic><topic>Inspection</topic><topic>Mapping</topic><topic>Pipe bends</topic><toplevel>online_resources</toplevel><creatorcontrib>kagami, Sho</creatorcontrib><creatorcontrib>Taira, Hajime</creatorcontrib><creatorcontrib>Miyashita, Naoyuki</creatorcontrib><creatorcontrib>Torii, Akihiko</creatorcontrib><creatorcontrib>Okutomi, Masatoshi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>kagami, Sho</au><au>Taira, Hajime</au><au>Miyashita, Naoyuki</au><au>Torii, Akihiko</au><au>Okutomi, Masatoshi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint</atitle><jtitle>arXiv.org</jtitle><date>2020-07-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Pipe inspection is a critical task for many industries and infrastructure of a city. The 3D information of a pipe can be used for revealing the deformation of the pipe surface and position of the camera during the inspection. In this paper, we propose a 3D pipe reconstruction system using sequential images captured by a monocular endoscopic camera. Our work extends a state-of-the-art incremental Structure-from-Motion (SfM) method to incorporate prior constraints given by the target shape into bundle adjustment (BA). Using this constraint, we can minimize the scale-drift that is the general problem in SfM. Moreover, our method can reconstruct a pipe network composed of multiple parts including straight pipes, elbows, and tees. In the experiments, we show that the proposed system enables more accurate and robust pipe mapping from a monocular camera in comparison with existing state-of-the-art methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2414908400
source Free E- Journals
subjects Bundle adjustment
Cameras
Image reconstruction
Inspection
Mapping
Pipe bends
title 3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=3D%20Pipe%20Network%20Reconstruction%20Based%20on%20Structure%20from%20Motion%20with%20Incremental%20Conic%20Shape%20Detection%20and%20Cylindrical%20Constraint&rft.jtitle=arXiv.org&rft.au=kagami,%20Sho&rft.date=2020-07-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2414908400%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414908400&rft_id=info:pmid/&rfr_iscdi=true