The Gauss map of minimal surfaces in \(\mathbb{S}^2\times\mathbb{R}\)
In this work, we consider the model of \(\mathbb{S}^2\times\mathbb{R}\) isometric to \(\mathbb{R}^3\setminus \{0\}\), endowed with a metric conformally equivalent to the Euclidean metric of \(\mathbb{R}^3\), and we define a Gauss map for surfaces in this model likewise in the \(3-\)Euclidean space....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Iury Domingos |
description | In this work, we consider the model of \(\mathbb{S}^2\times\mathbb{R}\) isometric to \(\mathbb{R}^3\setminus \{0\}\), endowed with a metric conformally equivalent to the Euclidean metric of \(\mathbb{R}^3\), and we define a Gauss map for surfaces in this model likewise in the \(3-\)Euclidean space. We show as a main result that any two minimal conformal immersions in \(\mathbb{S}^2\times\mathbb{R}\) with the same non-constant Gauss map differ by only two types of ambient isometries: either \(f=(\mathrm{id},T)\), where \(T\) is a translation on \(\mathbb{R}\), or \(f=(\mathcal{A},T)\), where \(\mathcal{A}\) denotes the antipodal map on \(\mathbb{S}^2\). Moreover, if the Gauss map is singular, we show that it is necessarily constant, and then only vertical cylinders over geodesics of \(\mathbb{S}^2\) in \(\mathbb{S}^2\times\mathbb{R}\) appear with this assumption. We also study some particular cases, among them we prove that there is no minimal conformal immersion in \(\mathbb{S}^2\times\mathbb{R}\) which the Gauss map is a non-constant anti-holomorphic map. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2414585808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414585808</sourcerecordid><originalsourceid>FETCH-proquest_journals_24145858083</originalsourceid><addsrcrecordid>eNqNikELgjAYQEcQJOV_GHSpgzC_udo9rM7lcSgzJk6cmp87hf-9DnXv9OC9tyABcB5HMgFYkRCxYYzB4QhC8ICkWW3oRXtE6vRA-4o621mnW4p-rPTDILUdVTvl9FSX5es-56Am6wz-zG1W-w1ZVrpFE365Jttzmp2u0TD2T29wKprej90nFZDEiZBCMsn_u95ACzqV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414585808</pqid></control><display><type>article</type><title>The Gauss map of minimal surfaces in \(\mathbb{S}^2\times\mathbb{R}\)</title><source>Free E- Journals</source><creator>Iury Domingos</creator><creatorcontrib>Iury Domingos</creatorcontrib><description>In this work, we consider the model of \(\mathbb{S}^2\times\mathbb{R}\) isometric to \(\mathbb{R}^3\setminus \{0\}\), endowed with a metric conformally equivalent to the Euclidean metric of \(\mathbb{R}^3\), and we define a Gauss map for surfaces in this model likewise in the \(3-\)Euclidean space. We show as a main result that any two minimal conformal immersions in \(\mathbb{S}^2\times\mathbb{R}\) with the same non-constant Gauss map differ by only two types of ambient isometries: either \(f=(\mathrm{id},T)\), where \(T\) is a translation on \(\mathbb{R}\), or \(f=(\mathcal{A},T)\), where \(\mathcal{A}\) denotes the antipodal map on \(\mathbb{S}^2\). Moreover, if the Gauss map is singular, we show that it is necessarily constant, and then only vertical cylinders over geodesics of \(\mathbb{S}^2\) in \(\mathbb{S}^2\times\mathbb{R}\) appear with this assumption. We also study some particular cases, among them we prove that there is no minimal conformal immersion in \(\mathbb{S}^2\times\mathbb{R}\) which the Gauss map is a non-constant anti-holomorphic map.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Euclidean geometry ; Euclidean space ; Geodesy ; Minimal surfaces ; Submerging ; Vertical cylinders</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Iury Domingos</creatorcontrib><title>The Gauss map of minimal surfaces in \(\mathbb{S}^2\times\mathbb{R}\)</title><title>arXiv.org</title><description>In this work, we consider the model of \(\mathbb{S}^2\times\mathbb{R}\) isometric to \(\mathbb{R}^3\setminus \{0\}\), endowed with a metric conformally equivalent to the Euclidean metric of \(\mathbb{R}^3\), and we define a Gauss map for surfaces in this model likewise in the \(3-\)Euclidean space. We show as a main result that any two minimal conformal immersions in \(\mathbb{S}^2\times\mathbb{R}\) with the same non-constant Gauss map differ by only two types of ambient isometries: either \(f=(\mathrm{id},T)\), where \(T\) is a translation on \(\mathbb{R}\), or \(f=(\mathcal{A},T)\), where \(\mathcal{A}\) denotes the antipodal map on \(\mathbb{S}^2\). Moreover, if the Gauss map is singular, we show that it is necessarily constant, and then only vertical cylinders over geodesics of \(\mathbb{S}^2\) in \(\mathbb{S}^2\times\mathbb{R}\) appear with this assumption. We also study some particular cases, among them we prove that there is no minimal conformal immersion in \(\mathbb{S}^2\times\mathbb{R}\) which the Gauss map is a non-constant anti-holomorphic map.</description><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Geodesy</subject><subject>Minimal surfaces</subject><subject>Submerging</subject><subject>Vertical cylinders</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikELgjAYQEcQJOV_GHSpgzC_udo9rM7lcSgzJk6cmp87hf-9DnXv9OC9tyABcB5HMgFYkRCxYYzB4QhC8ICkWW3oRXtE6vRA-4o621mnW4p-rPTDILUdVTvl9FSX5es-56Am6wz-zG1W-w1ZVrpFE365Jttzmp2u0TD2T29wKprej90nFZDEiZBCMsn_u95ACzqV</recordid><startdate>20200617</startdate><enddate>20200617</enddate><creator>Iury Domingos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200617</creationdate><title>The Gauss map of minimal surfaces in \(\mathbb{S}^2\times\mathbb{R}\)</title><author>Iury Domingos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24145858083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Geodesy</topic><topic>Minimal surfaces</topic><topic>Submerging</topic><topic>Vertical cylinders</topic><toplevel>online_resources</toplevel><creatorcontrib>Iury Domingos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iury Domingos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Gauss map of minimal surfaces in \(\mathbb{S}^2\times\mathbb{R}\)</atitle><jtitle>arXiv.org</jtitle><date>2020-06-17</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this work, we consider the model of \(\mathbb{S}^2\times\mathbb{R}\) isometric to \(\mathbb{R}^3\setminus \{0\}\), endowed with a metric conformally equivalent to the Euclidean metric of \(\mathbb{R}^3\), and we define a Gauss map for surfaces in this model likewise in the \(3-\)Euclidean space. We show as a main result that any two minimal conformal immersions in \(\mathbb{S}^2\times\mathbb{R}\) with the same non-constant Gauss map differ by only two types of ambient isometries: either \(f=(\mathrm{id},T)\), where \(T\) is a translation on \(\mathbb{R}\), or \(f=(\mathcal{A},T)\), where \(\mathcal{A}\) denotes the antipodal map on \(\mathbb{S}^2\). Moreover, if the Gauss map is singular, we show that it is necessarily constant, and then only vertical cylinders over geodesics of \(\mathbb{S}^2\) in \(\mathbb{S}^2\times\mathbb{R}\) appear with this assumption. We also study some particular cases, among them we prove that there is no minimal conformal immersion in \(\mathbb{S}^2\times\mathbb{R}\) which the Gauss map is a non-constant anti-holomorphic map.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2414585808 |
source | Free E- Journals |
subjects | Euclidean geometry Euclidean space Geodesy Minimal surfaces Submerging Vertical cylinders |
title | The Gauss map of minimal surfaces in \(\mathbb{S}^2\times\mathbb{R}\) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Gauss%20map%20of%20minimal%20surfaces%20in%20%5C(%5Cmathbb%7BS%7D%5E2%5Ctimes%5Cmathbb%7BR%7D%5C)&rft.jtitle=arXiv.org&rft.au=Iury%20Domingos&rft.date=2020-06-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2414585808%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414585808&rft_id=info:pmid/&rfr_iscdi=true |