Temperature overshoot as the cause of physical changes in resistive switching devices during electro-formation

Resistive switching devices based on transition metal oxides require formation of a conductive filament in order for the device to be able to switch. Such filaments have been proposed to form by the reduction of oxide due to the application of the electric field, but this report seeks to rebut that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-06, Vol.127 (23)
Hauptverfasser: Meng, Jingjia, Zhao, Bingyuan, Xu, Qiyun, Goodwill, Jonathan M., Bain, James A., Skowronski, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page
container_title Journal of applied physics
container_volume 127
creator Meng, Jingjia
Zhao, Bingyuan
Xu, Qiyun
Goodwill, Jonathan M.
Bain, James A.
Skowronski, Marek
description Resistive switching devices based on transition metal oxides require formation of a conductive filament in order for the device to be able to switch. Such filaments have been proposed to form by the reduction of oxide due to the application of the electric field, but this report seeks to rebut that interpretation. Frequently reported physical changes during electro-formation include delamination of electrodes, crystallization of functional oxide, intermixing of electrode and oxide materials, and extensive loss of oxygen presumably to the ambient. Here, we show that most of these effects are not inherent to the formation and switching processes and instead are due to an experimental artifact: the discharge of parasitic capacitances in the forming circuit. Discharge of typical BNC cables can raise the temperature of the filament to between 2000 and 5000 K resulting in extensive physical changes. Discharge and associated effects mentioned above can be eliminated using an on-chip load element without affecting the ability to switch.
doi_str_mv 10.1063/5.0010882
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2414549318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414549318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-55cdfa00ace2f07086c172506b7099c56916c42d94923b79e8e1eba0a00c592e3</originalsourceid><addsrcrecordid>eNqdkE9PwzAMxSMEEmNw4BtE4gRSh5M2bXNEE_-kSVzGucpSd820NSVJi_btydgk7pyebP9s6z1CbhnMGOTpo5gBMChLfkYmUWVSCAHnZALAWVLKQl6SK-83EWJlKiekW-KuR6fC4JDaEZ1vrQ1UeRpapFoNPrYb2rd7b7TaUt2qbo2emo469MYHMyL13ybo1nRrWuNodBzXgzuUuEUdnE0a63YqGNtdk4tGbT3enHRKPl-el_O3ZPHx-j5_WiQ6zXlIhNB1owCURt5AAWWuWcEF5KsCpNQilyzXGa9lJnm6KiSWyHClIK5oITmmU3J3vNs7-zWgD9XGDq6LLyuesUxkMo3-p-T-SGlnvXfYVL0zO-X2FYPqEGclqlOckX04sl6b8Ovlf_Bo3R9Y9XWT_gDVMYS9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414549318</pqid></control><display><type>article</type><title>Temperature overshoot as the cause of physical changes in resistive switching devices during electro-formation</title><source>American Institute of Physics</source><source>Alma/SFX Local Collection</source><creator>Meng, Jingjia ; Zhao, Bingyuan ; Xu, Qiyun ; Goodwill, Jonathan M. ; Bain, James A. ; Skowronski, Marek</creator><creatorcontrib>Meng, Jingjia ; Zhao, Bingyuan ; Xu, Qiyun ; Goodwill, Jonathan M. ; Bain, James A. ; Skowronski, Marek</creatorcontrib><description>Resistive switching devices based on transition metal oxides require formation of a conductive filament in order for the device to be able to switch. Such filaments have been proposed to form by the reduction of oxide due to the application of the electric field, but this report seeks to rebut that interpretation. Frequently reported physical changes during electro-formation include delamination of electrodes, crystallization of functional oxide, intermixing of electrode and oxide materials, and extensive loss of oxygen presumably to the ambient. Here, we show that most of these effects are not inherent to the formation and switching processes and instead are due to an experimental artifact: the discharge of parasitic capacitances in the forming circuit. Discharge of typical BNC cables can raise the temperature of the filament to between 2000 and 5000 K resulting in extensive physical changes. Discharge and associated effects mentioned above can be eliminated using an on-chip load element without affecting the ability to switch.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0010882</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cables ; Circuits ; Crystallization ; Electric fields ; Electrodes ; Filaments ; Switching ; Transition metal oxides</subject><ispartof>Journal of applied physics, 2020-06, Vol.127 (23)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-55cdfa00ace2f07086c172506b7099c56916c42d94923b79e8e1eba0a00c592e3</citedby><cites>FETCH-LOGICAL-c362t-55cdfa00ace2f07086c172506b7099c56916c42d94923b79e8e1eba0a00c592e3</cites><orcidid>0000-0003-4519-0752 ; 0000-0002-5355-5048 ; 0000-0002-3466-3350 ; 0000-0002-9062-0136 ; 0000-0002-2087-0068 ; 0000-0002-6247-5699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0010882$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Meng, Jingjia</creatorcontrib><creatorcontrib>Zhao, Bingyuan</creatorcontrib><creatorcontrib>Xu, Qiyun</creatorcontrib><creatorcontrib>Goodwill, Jonathan M.</creatorcontrib><creatorcontrib>Bain, James A.</creatorcontrib><creatorcontrib>Skowronski, Marek</creatorcontrib><title>Temperature overshoot as the cause of physical changes in resistive switching devices during electro-formation</title><title>Journal of applied physics</title><description>Resistive switching devices based on transition metal oxides require formation of a conductive filament in order for the device to be able to switch. Such filaments have been proposed to form by the reduction of oxide due to the application of the electric field, but this report seeks to rebut that interpretation. Frequently reported physical changes during electro-formation include delamination of electrodes, crystallization of functional oxide, intermixing of electrode and oxide materials, and extensive loss of oxygen presumably to the ambient. Here, we show that most of these effects are not inherent to the formation and switching processes and instead are due to an experimental artifact: the discharge of parasitic capacitances in the forming circuit. Discharge of typical BNC cables can raise the temperature of the filament to between 2000 and 5000 K resulting in extensive physical changes. Discharge and associated effects mentioned above can be eliminated using an on-chip load element without affecting the ability to switch.</description><subject>Cables</subject><subject>Circuits</subject><subject>Crystallization</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Filaments</subject><subject>Switching</subject><subject>Transition metal oxides</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkE9PwzAMxSMEEmNw4BtE4gRSh5M2bXNEE_-kSVzGucpSd820NSVJi_btydgk7pyebP9s6z1CbhnMGOTpo5gBMChLfkYmUWVSCAHnZALAWVLKQl6SK-83EWJlKiekW-KuR6fC4JDaEZ1vrQ1UeRpapFoNPrYb2rd7b7TaUt2qbo2emo469MYHMyL13ybo1nRrWuNodBzXgzuUuEUdnE0a63YqGNtdk4tGbT3enHRKPl-el_O3ZPHx-j5_WiQ6zXlIhNB1owCURt5AAWWuWcEF5KsCpNQilyzXGa9lJnm6KiSWyHClIK5oITmmU3J3vNs7-zWgD9XGDq6LLyuesUxkMo3-p-T-SGlnvXfYVL0zO-X2FYPqEGclqlOckX04sl6b8Ovlf_Bo3R9Y9XWT_gDVMYS9</recordid><startdate>20200621</startdate><enddate>20200621</enddate><creator>Meng, Jingjia</creator><creator>Zhao, Bingyuan</creator><creator>Xu, Qiyun</creator><creator>Goodwill, Jonathan M.</creator><creator>Bain, James A.</creator><creator>Skowronski, Marek</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4519-0752</orcidid><orcidid>https://orcid.org/0000-0002-5355-5048</orcidid><orcidid>https://orcid.org/0000-0002-3466-3350</orcidid><orcidid>https://orcid.org/0000-0002-9062-0136</orcidid><orcidid>https://orcid.org/0000-0002-2087-0068</orcidid><orcidid>https://orcid.org/0000-0002-6247-5699</orcidid></search><sort><creationdate>20200621</creationdate><title>Temperature overshoot as the cause of physical changes in resistive switching devices during electro-formation</title><author>Meng, Jingjia ; Zhao, Bingyuan ; Xu, Qiyun ; Goodwill, Jonathan M. ; Bain, James A. ; Skowronski, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-55cdfa00ace2f07086c172506b7099c56916c42d94923b79e8e1eba0a00c592e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cables</topic><topic>Circuits</topic><topic>Crystallization</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Filaments</topic><topic>Switching</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Jingjia</creatorcontrib><creatorcontrib>Zhao, Bingyuan</creatorcontrib><creatorcontrib>Xu, Qiyun</creatorcontrib><creatorcontrib>Goodwill, Jonathan M.</creatorcontrib><creatorcontrib>Bain, James A.</creatorcontrib><creatorcontrib>Skowronski, Marek</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Jingjia</au><au>Zhao, Bingyuan</au><au>Xu, Qiyun</au><au>Goodwill, Jonathan M.</au><au>Bain, James A.</au><au>Skowronski, Marek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature overshoot as the cause of physical changes in resistive switching devices during electro-formation</atitle><jtitle>Journal of applied physics</jtitle><date>2020-06-21</date><risdate>2020</risdate><volume>127</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Resistive switching devices based on transition metal oxides require formation of a conductive filament in order for the device to be able to switch. Such filaments have been proposed to form by the reduction of oxide due to the application of the electric field, but this report seeks to rebut that interpretation. Frequently reported physical changes during electro-formation include delamination of electrodes, crystallization of functional oxide, intermixing of electrode and oxide materials, and extensive loss of oxygen presumably to the ambient. Here, we show that most of these effects are not inherent to the formation and switching processes and instead are due to an experimental artifact: the discharge of parasitic capacitances in the forming circuit. Discharge of typical BNC cables can raise the temperature of the filament to between 2000 and 5000 K resulting in extensive physical changes. Discharge and associated effects mentioned above can be eliminated using an on-chip load element without affecting the ability to switch.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0010882</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4519-0752</orcidid><orcidid>https://orcid.org/0000-0002-5355-5048</orcidid><orcidid>https://orcid.org/0000-0002-3466-3350</orcidid><orcidid>https://orcid.org/0000-0002-9062-0136</orcidid><orcidid>https://orcid.org/0000-0002-2087-0068</orcidid><orcidid>https://orcid.org/0000-0002-6247-5699</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-06, Vol.127 (23)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2414549318
source American Institute of Physics; Alma/SFX Local Collection
subjects Cables
Circuits
Crystallization
Electric fields
Electrodes
Filaments
Switching
Transition metal oxides
title Temperature overshoot as the cause of physical changes in resistive switching devices during electro-formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20overshoot%20as%20the%20cause%20of%20physical%20changes%20in%20resistive%20switching%20devices%20during%20electro-formation&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Meng,%20Jingjia&rft.date=2020-06-21&rft.volume=127&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0010882&rft_dat=%3Cproquest_scita%3E2414549318%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414549318&rft_id=info:pmid/&rfr_iscdi=true