Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images

Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.2925-2939
Hauptverfasser: Cristea, Anca, van Houtte, Jeroen, Doulgeris, Anthony P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2939
container_issue
container_start_page 2925
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Cristea, Anca
van Houtte, Jeroen
Doulgeris, Anthony P.
description Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the targets, thus rendering single-rate image correction approaches only partially successful. The decay, also known as the incidence angle effect, impacts the segmentation of wide-swath images performed on absolute intensity values. We propose to integrate the target-specific intensity decay rates into a nonstationary statistical model, for use in a fully automatic and unsupervised segmentation algorithm. We demonstrate this concept by assuming Gaussian distributed log-intensities and linear decay rates, a fitting approximation for the smooth systematic decay observed for extended flat targets. The segmentation is performed on Sentinel-1, Radarsat-2, and UAVSAR wide-swath scenes containing open water, sea ice, and oil slicks. As a result, we obtain segments connected throughout the entire incidence angle range, thus overcoming the limitations of modeling that does not account for different per-target decays. The model simplicity also allows for short execution times and presents the segmentation approach as a potential operational algorithm. In addition, we estimate the log-linear decay rates and examine their potential for a physical interpretation of the segments.
doi_str_mv 10.1109/JSTARS.2020.2993067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2414534841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9103275</ieee_id><doaj_id>oai_doaj_org_article_efd4cdd5e6284930a00f15cf3982e6b1</doaj_id><sourcerecordid>2414534841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-edf8c6dbef6ff69bc33b3fc80684edefdd488e5e436627ebeb3dd99747b890333</originalsourceid><addsrcrecordid>eNo9kU1v1DAQhiNEJZbCL-iBSJyz2B7HiY_LQktQJaRue0SWY49DVrv2YnsP_Hu8pPQ00sy8z3y8VXVDyZpSIj993z1uHnZrRhhZMymBiO5VtWK0pQ1toX1dragE2VBO-JvqbUp7QgTrJKyqn4PPOEWdZz_VgzezRW-w3vjpgPUXPKG_JGZMpZhDnX9hvT2cU8ZYBM1nndDWO5yO6HNhBF8HV-82D_Vw1BOmd9WV04eE75_jdfV0-_Vx-625_3E3bDf3jeHAcoPW9UbYEZ1wTsjRAIzgTE9Ez9Gis5b3PbbIQZS1ccQRrJWy493YSwIA19WwcG3Qe3WK81HHPyroWf1LhDgpHfNsDqgKjRtrWxSs5-VTmhBHW-NA9gzFSAvrw8IycU7lLcqHqBUlBDrFKAFROj4uHacYfp8xZbUP5-jLgYpxylvgPb9w4D8npBTRvexFibq4phbX1MU19exaUd0sqhkRXxSyzGVdC38BxPGSxg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414534841</pqid></control><display><type>article</type><title>Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images</title><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cristea, Anca ; van Houtte, Jeroen ; Doulgeris, Anthony P.</creator><creatorcontrib>Cristea, Anca ; van Houtte, Jeroen ; Doulgeris, Anthony P.</creatorcontrib><description>Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the targets, thus rendering single-rate image correction approaches only partially successful. The decay, also known as the incidence angle effect, impacts the segmentation of wide-swath images performed on absolute intensity values. We propose to integrate the target-specific intensity decay rates into a nonstationary statistical model, for use in a fully automatic and unsupervised segmentation algorithm. We demonstrate this concept by assuming Gaussian distributed log-intensities and linear decay rates, a fitting approximation for the smooth systematic decay observed for extended flat targets. The segmentation is performed on Sentinel-1, Radarsat-2, and UAVSAR wide-swath scenes containing open water, sea ice, and oil slicks. As a result, we obtain segments connected throughout the entire incidence angle range, thus overcoming the limitations of modeling that does not account for different per-target decays. The model simplicity also allows for short execution times and presents the segmentation approach as a potential operational algorithm. In addition, we estimate the log-linear decay rates and examine their potential for a physical interpretation of the segments.</description><identifier>ISSN: 1939-1404</identifier><identifier>ISSN: 2151-1535</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2993067</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation ; Backscatter ; Clustering ; Decay ; Decay rate ; Earth ; Image acquisition ; Image processing ; Image segmentation ; Incidence angle ; Mathematical models ; Microwave radiation ; Microwaves ; Oil slicks ; Radar equipment ; Radar imaging ; Radarsat ; Remote sensing ; SAR (radar) ; Sea ice ; Sea surface ; Slicks ; Statistical models ; Surface topography ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Target recognition ; Technology: 500 ; Teknologi: 500 ; VDP</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.2925-2939</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-edf8c6dbef6ff69bc33b3fc80684edefdd488e5e436627ebeb3dd99747b890333</citedby><cites>FETCH-LOGICAL-c432t-edf8c6dbef6ff69bc33b3fc80684edefdd488e5e436627ebeb3dd99747b890333</cites><orcidid>0000-0002-9345-6896 ; 0000-0001-9021-2610 ; 0000-0001-7520-7143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2100,4014,26558,27914,27915,27916</link.rule.ids></links><search><creatorcontrib>Cristea, Anca</creatorcontrib><creatorcontrib>van Houtte, Jeroen</creatorcontrib><creatorcontrib>Doulgeris, Anthony P.</creatorcontrib><title>Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the targets, thus rendering single-rate image correction approaches only partially successful. The decay, also known as the incidence angle effect, impacts the segmentation of wide-swath images performed on absolute intensity values. We propose to integrate the target-specific intensity decay rates into a nonstationary statistical model, for use in a fully automatic and unsupervised segmentation algorithm. We demonstrate this concept by assuming Gaussian distributed log-intensities and linear decay rates, a fitting approximation for the smooth systematic decay observed for extended flat targets. The segmentation is performed on Sentinel-1, Radarsat-2, and UAVSAR wide-swath scenes containing open water, sea ice, and oil slicks. As a result, we obtain segments connected throughout the entire incidence angle range, thus overcoming the limitations of modeling that does not account for different per-target decays. The model simplicity also allows for short execution times and presents the segmentation approach as a potential operational algorithm. In addition, we estimate the log-linear decay rates and examine their potential for a physical interpretation of the segments.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Backscatter</subject><subject>Clustering</subject><subject>Decay</subject><subject>Decay rate</subject><subject>Earth</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Incidence angle</subject><subject>Mathematical models</subject><subject>Microwave radiation</subject><subject>Microwaves</subject><subject>Oil slicks</subject><subject>Radar equipment</subject><subject>Radar imaging</subject><subject>Radarsat</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Sea ice</subject><subject>Sea surface</subject><subject>Slicks</subject><subject>Statistical models</subject><subject>Surface topography</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Target recognition</subject><subject>Technology: 500</subject><subject>Teknologi: 500</subject><subject>VDP</subject><issn>1939-1404</issn><issn>2151-1535</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU1v1DAQhiNEJZbCL-iBSJyz2B7HiY_LQktQJaRue0SWY49DVrv2YnsP_Hu8pPQ00sy8z3y8VXVDyZpSIj993z1uHnZrRhhZMymBiO5VtWK0pQ1toX1dragE2VBO-JvqbUp7QgTrJKyqn4PPOEWdZz_VgzezRW-w3vjpgPUXPKG_JGZMpZhDnX9hvT2cU8ZYBM1nndDWO5yO6HNhBF8HV-82D_Vw1BOmd9WV04eE75_jdfV0-_Vx-625_3E3bDf3jeHAcoPW9UbYEZ1wTsjRAIzgTE9Ez9Gis5b3PbbIQZS1ccQRrJWy493YSwIA19WwcG3Qe3WK81HHPyroWf1LhDgpHfNsDqgKjRtrWxSs5-VTmhBHW-NA9gzFSAvrw8IycU7lLcqHqBUlBDrFKAFROj4uHacYfp8xZbUP5-jLgYpxylvgPb9w4D8npBTRvexFibq4phbX1MU19exaUd0sqhkRXxSyzGVdC38BxPGSxg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cristea, Anca</creator><creator>van Houtte, Jeroen</creator><creator>Doulgeris, Anthony P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9345-6896</orcidid><orcidid>https://orcid.org/0000-0001-9021-2610</orcidid><orcidid>https://orcid.org/0000-0001-7520-7143</orcidid></search><sort><creationdate>2020</creationdate><title>Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images</title><author>Cristea, Anca ; van Houtte, Jeroen ; Doulgeris, Anthony P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-edf8c6dbef6ff69bc33b3fc80684edefdd488e5e436627ebeb3dd99747b890333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Backscatter</topic><topic>Clustering</topic><topic>Decay</topic><topic>Decay rate</topic><topic>Earth</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Incidence angle</topic><topic>Mathematical models</topic><topic>Microwave radiation</topic><topic>Microwaves</topic><topic>Oil slicks</topic><topic>Radar equipment</topic><topic>Radar imaging</topic><topic>Radarsat</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Sea ice</topic><topic>Sea surface</topic><topic>Slicks</topic><topic>Statistical models</topic><topic>Surface topography</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Target recognition</topic><topic>Technology: 500</topic><topic>Teknologi: 500</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cristea, Anca</creatorcontrib><creatorcontrib>van Houtte, Jeroen</creatorcontrib><creatorcontrib>Doulgeris, Anthony P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cristea, Anca</au><au>van Houtte, Jeroen</au><au>Doulgeris, Anthony P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>2925</spage><epage>2939</epage><pages>2925-2939</pages><issn>1939-1404</issn><issn>2151-1535</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the targets, thus rendering single-rate image correction approaches only partially successful. The decay, also known as the incidence angle effect, impacts the segmentation of wide-swath images performed on absolute intensity values. We propose to integrate the target-specific intensity decay rates into a nonstationary statistical model, for use in a fully automatic and unsupervised segmentation algorithm. We demonstrate this concept by assuming Gaussian distributed log-intensities and linear decay rates, a fitting approximation for the smooth systematic decay observed for extended flat targets. The segmentation is performed on Sentinel-1, Radarsat-2, and UAVSAR wide-swath scenes containing open water, sea ice, and oil slicks. As a result, we obtain segments connected throughout the entire incidence angle range, thus overcoming the limitations of modeling that does not account for different per-target decays. The model simplicity also allows for short execution times and presents the segmentation approach as a potential operational algorithm. In addition, we estimate the log-linear decay rates and examine their potential for a physical interpretation of the segments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.2993067</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9345-6896</orcidid><orcidid>https://orcid.org/0000-0001-9021-2610</orcidid><orcidid>https://orcid.org/0000-0001-7520-7143</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.2925-2939
issn 1939-1404
2151-1535
2151-1535
language eng
recordid cdi_proquest_journals_2414534841
source NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Approximation
Backscatter
Clustering
Decay
Decay rate
Earth
Image acquisition
Image processing
Image segmentation
Incidence angle
Mathematical models
Microwave radiation
Microwaves
Oil slicks
Radar equipment
Radar imaging
Radarsat
Remote sensing
SAR (radar)
Sea ice
Sea surface
Slicks
Statistical models
Surface topography
Synthetic aperture radar
synthetic aperture radar (SAR)
Target recognition
Technology: 500
Teknologi: 500
VDP
title Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Incidence%20Angle%20Dependencies%20Into%20the%20Clustering-Based%20Segmentation%20of%20SAR%20Images&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Cristea,%20Anca&rft.date=2020&rft.volume=13&rft.spage=2925&rft.epage=2939&rft.pages=2925-2939&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2993067&rft_dat=%3Cproquest_cross%3E2414534841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414534841&rft_id=info:pmid/&rft_ieee_id=9103275&rft_doaj_id=oai_doaj_org_article_efd4cdd5e6284930a00f15cf3982e6b1&rfr_iscdi=true