Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images
Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.2925-2939 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2939 |
---|---|
container_issue | |
container_start_page | 2925 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 13 |
creator | Cristea, Anca van Houtte, Jeroen Doulgeris, Anthony P. |
description | Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the targets, thus rendering single-rate image correction approaches only partially successful. The decay, also known as the incidence angle effect, impacts the segmentation of wide-swath images performed on absolute intensity values. We propose to integrate the target-specific intensity decay rates into a nonstationary statistical model, for use in a fully automatic and unsupervised segmentation algorithm. We demonstrate this concept by assuming Gaussian distributed log-intensities and linear decay rates, a fitting approximation for the smooth systematic decay observed for extended flat targets. The segmentation is performed on Sentinel-1, Radarsat-2, and UAVSAR wide-swath scenes containing open water, sea ice, and oil slicks. As a result, we obtain segments connected throughout the entire incidence angle range, thus overcoming the limitations of modeling that does not account for different per-target decays. The model simplicity also allows for short execution times and presents the segmentation approach as a potential operational algorithm. In addition, we estimate the log-linear decay rates and examine their potential for a physical interpretation of the segments. |
doi_str_mv | 10.1109/JSTARS.2020.2993067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2414534841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9103275</ieee_id><doaj_id>oai_doaj_org_article_efd4cdd5e6284930a00f15cf3982e6b1</doaj_id><sourcerecordid>2414534841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-edf8c6dbef6ff69bc33b3fc80684edefdd488e5e436627ebeb3dd99747b890333</originalsourceid><addsrcrecordid>eNo9kU1v1DAQhiNEJZbCL-iBSJyz2B7HiY_LQktQJaRue0SWY49DVrv2YnsP_Hu8pPQ00sy8z3y8VXVDyZpSIj993z1uHnZrRhhZMymBiO5VtWK0pQ1toX1dragE2VBO-JvqbUp7QgTrJKyqn4PPOEWdZz_VgzezRW-w3vjpgPUXPKG_JGZMpZhDnX9hvT2cU8ZYBM1nndDWO5yO6HNhBF8HV-82D_Vw1BOmd9WV04eE75_jdfV0-_Vx-625_3E3bDf3jeHAcoPW9UbYEZ1wTsjRAIzgTE9Ez9Gis5b3PbbIQZS1ccQRrJWy493YSwIA19WwcG3Qe3WK81HHPyroWf1LhDgpHfNsDqgKjRtrWxSs5-VTmhBHW-NA9gzFSAvrw8IycU7lLcqHqBUlBDrFKAFROj4uHacYfp8xZbUP5-jLgYpxylvgPb9w4D8npBTRvexFibq4phbX1MU19exaUd0sqhkRXxSyzGVdC38BxPGSxg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414534841</pqid></control><display><type>article</type><title>Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images</title><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cristea, Anca ; van Houtte, Jeroen ; Doulgeris, Anthony P.</creator><creatorcontrib>Cristea, Anca ; van Houtte, Jeroen ; Doulgeris, Anthony P.</creatorcontrib><description>Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the targets, thus rendering single-rate image correction approaches only partially successful. The decay, also known as the incidence angle effect, impacts the segmentation of wide-swath images performed on absolute intensity values. We propose to integrate the target-specific intensity decay rates into a nonstationary statistical model, for use in a fully automatic and unsupervised segmentation algorithm. We demonstrate this concept by assuming Gaussian distributed log-intensities and linear decay rates, a fitting approximation for the smooth systematic decay observed for extended flat targets. The segmentation is performed on Sentinel-1, Radarsat-2, and UAVSAR wide-swath scenes containing open water, sea ice, and oil slicks. As a result, we obtain segments connected throughout the entire incidence angle range, thus overcoming the limitations of modeling that does not account for different per-target decays. The model simplicity also allows for short execution times and presents the segmentation approach as a potential operational algorithm. In addition, we estimate the log-linear decay rates and examine their potential for a physical interpretation of the segments.</description><identifier>ISSN: 1939-1404</identifier><identifier>ISSN: 2151-1535</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2993067</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation ; Backscatter ; Clustering ; Decay ; Decay rate ; Earth ; Image acquisition ; Image processing ; Image segmentation ; Incidence angle ; Mathematical models ; Microwave radiation ; Microwaves ; Oil slicks ; Radar equipment ; Radar imaging ; Radarsat ; Remote sensing ; SAR (radar) ; Sea ice ; Sea surface ; Slicks ; Statistical models ; Surface topography ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Target recognition ; Technology: 500 ; Teknologi: 500 ; VDP</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.2925-2939</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-edf8c6dbef6ff69bc33b3fc80684edefdd488e5e436627ebeb3dd99747b890333</citedby><cites>FETCH-LOGICAL-c432t-edf8c6dbef6ff69bc33b3fc80684edefdd488e5e436627ebeb3dd99747b890333</cites><orcidid>0000-0002-9345-6896 ; 0000-0001-9021-2610 ; 0000-0001-7520-7143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2100,4014,26558,27914,27915,27916</link.rule.ids></links><search><creatorcontrib>Cristea, Anca</creatorcontrib><creatorcontrib>van Houtte, Jeroen</creatorcontrib><creatorcontrib>Doulgeris, Anthony P.</creatorcontrib><title>Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the targets, thus rendering single-rate image correction approaches only partially successful. The decay, also known as the incidence angle effect, impacts the segmentation of wide-swath images performed on absolute intensity values. We propose to integrate the target-specific intensity decay rates into a nonstationary statistical model, for use in a fully automatic and unsupervised segmentation algorithm. We demonstrate this concept by assuming Gaussian distributed log-intensities and linear decay rates, a fitting approximation for the smooth systematic decay observed for extended flat targets. The segmentation is performed on Sentinel-1, Radarsat-2, and UAVSAR wide-swath scenes containing open water, sea ice, and oil slicks. As a result, we obtain segments connected throughout the entire incidence angle range, thus overcoming the limitations of modeling that does not account for different per-target decays. The model simplicity also allows for short execution times and presents the segmentation approach as a potential operational algorithm. In addition, we estimate the log-linear decay rates and examine their potential for a physical interpretation of the segments.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Backscatter</subject><subject>Clustering</subject><subject>Decay</subject><subject>Decay rate</subject><subject>Earth</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Incidence angle</subject><subject>Mathematical models</subject><subject>Microwave radiation</subject><subject>Microwaves</subject><subject>Oil slicks</subject><subject>Radar equipment</subject><subject>Radar imaging</subject><subject>Radarsat</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Sea ice</subject><subject>Sea surface</subject><subject>Slicks</subject><subject>Statistical models</subject><subject>Surface topography</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Target recognition</subject><subject>Technology: 500</subject><subject>Teknologi: 500</subject><subject>VDP</subject><issn>1939-1404</issn><issn>2151-1535</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU1v1DAQhiNEJZbCL-iBSJyz2B7HiY_LQktQJaRue0SWY49DVrv2YnsP_Hu8pPQ00sy8z3y8VXVDyZpSIj993z1uHnZrRhhZMymBiO5VtWK0pQ1toX1dragE2VBO-JvqbUp7QgTrJKyqn4PPOEWdZz_VgzezRW-w3vjpgPUXPKG_JGZMpZhDnX9hvT2cU8ZYBM1nndDWO5yO6HNhBF8HV-82D_Vw1BOmd9WV04eE75_jdfV0-_Vx-625_3E3bDf3jeHAcoPW9UbYEZ1wTsjRAIzgTE9Ez9Gis5b3PbbIQZS1ccQRrJWy493YSwIA19WwcG3Qe3WK81HHPyroWf1LhDgpHfNsDqgKjRtrWxSs5-VTmhBHW-NA9gzFSAvrw8IycU7lLcqHqBUlBDrFKAFROj4uHacYfp8xZbUP5-jLgYpxylvgPb9w4D8npBTRvexFibq4phbX1MU19exaUd0sqhkRXxSyzGVdC38BxPGSxg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cristea, Anca</creator><creator>van Houtte, Jeroen</creator><creator>Doulgeris, Anthony P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9345-6896</orcidid><orcidid>https://orcid.org/0000-0001-9021-2610</orcidid><orcidid>https://orcid.org/0000-0001-7520-7143</orcidid></search><sort><creationdate>2020</creationdate><title>Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images</title><author>Cristea, Anca ; van Houtte, Jeroen ; Doulgeris, Anthony P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-edf8c6dbef6ff69bc33b3fc80684edefdd488e5e436627ebeb3dd99747b890333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Backscatter</topic><topic>Clustering</topic><topic>Decay</topic><topic>Decay rate</topic><topic>Earth</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Incidence angle</topic><topic>Mathematical models</topic><topic>Microwave radiation</topic><topic>Microwaves</topic><topic>Oil slicks</topic><topic>Radar equipment</topic><topic>Radar imaging</topic><topic>Radarsat</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Sea ice</topic><topic>Sea surface</topic><topic>Slicks</topic><topic>Statistical models</topic><topic>Surface topography</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Target recognition</topic><topic>Technology: 500</topic><topic>Teknologi: 500</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cristea, Anca</creatorcontrib><creatorcontrib>van Houtte, Jeroen</creatorcontrib><creatorcontrib>Doulgeris, Anthony P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cristea, Anca</au><au>van Houtte, Jeroen</au><au>Doulgeris, Anthony P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>2925</spage><epage>2939</epage><pages>2925-2939</pages><issn>1939-1404</issn><issn>2151-1535</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the targets, thus rendering single-rate image correction approaches only partially successful. The decay, also known as the incidence angle effect, impacts the segmentation of wide-swath images performed on absolute intensity values. We propose to integrate the target-specific intensity decay rates into a nonstationary statistical model, for use in a fully automatic and unsupervised segmentation algorithm. We demonstrate this concept by assuming Gaussian distributed log-intensities and linear decay rates, a fitting approximation for the smooth systematic decay observed for extended flat targets. The segmentation is performed on Sentinel-1, Radarsat-2, and UAVSAR wide-swath scenes containing open water, sea ice, and oil slicks. As a result, we obtain segments connected throughout the entire incidence angle range, thus overcoming the limitations of modeling that does not account for different per-target decays. The model simplicity also allows for short execution times and presents the segmentation approach as a potential operational algorithm. In addition, we estimate the log-linear decay rates and examine their potential for a physical interpretation of the segments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.2993067</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9345-6896</orcidid><orcidid>https://orcid.org/0000-0001-9021-2610</orcidid><orcidid>https://orcid.org/0000-0001-7520-7143</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.2925-2939 |
issn | 1939-1404 2151-1535 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2414534841 |
source | NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Approximation Backscatter Clustering Decay Decay rate Earth Image acquisition Image processing Image segmentation Incidence angle Mathematical models Microwave radiation Microwaves Oil slicks Radar equipment Radar imaging Radarsat Remote sensing SAR (radar) Sea ice Sea surface Slicks Statistical models Surface topography Synthetic aperture radar synthetic aperture radar (SAR) Target recognition Technology: 500 Teknologi: 500 VDP |
title | Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Incidence%20Angle%20Dependencies%20Into%20the%20Clustering-Based%20Segmentation%20of%20SAR%20Images&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Cristea,%20Anca&rft.date=2020&rft.volume=13&rft.spage=2925&rft.epage=2939&rft.pages=2925-2939&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2993067&rft_dat=%3Cproquest_cross%3E2414534841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414534841&rft_id=info:pmid/&rft_ieee_id=9103275&rft_doaj_id=oai_doaj_org_article_efd4cdd5e6284930a00f15cf3982e6b1&rfr_iscdi=true |