Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems

This article proposes a gated recurrent unit (GRU) neural network prediction and compensation (NNC) strategy for precision multiaxis motion control systems with contouring performance orientation. First, some characteristic contouring tasks are carried out on a multiaxis linear-motor-driven motion s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2020-06, Vol.25 (3), p.1377-1388
Hauptverfasser: Hu, Chuxiong, Ou, Tiansheng, Chang, Haonan, Zhu, Yu, Zhu, Limin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1388
container_issue 3
container_start_page 1377
container_title IEEE/ASME transactions on mechatronics
container_volume 25
creator Hu, Chuxiong
Ou, Tiansheng
Chang, Haonan
Zhu, Yu
Zhu, Limin
description This article proposes a gated recurrent unit (GRU) neural network prediction and compensation (NNC) strategy for precision multiaxis motion control systems with contouring performance orientation. First, some characteristic contouring tasks are carried out on a multiaxis linear-motor-driven motion system, and the true contouring error values obtained by the Newton numerical calculation method are used as the training data of a developed artificial GRU neural network. Essentially, the proposed GRU neural network structure can be viewed as a data-based black-box error model, which can capture the dynamic characteristics of contouring motion rather accurately. The well-trained GRU network can predict the contouring error precisely even under the tasks those have not been conducted during the training session. Moreover, the predicted contouring error is compensated into the reference contour as feedforward compensation to improve the final contouring performance. Comparison between the predicted contouring error and the actual contouring error practically proves the effective prediction ability of the proposed GRU neural network. Furthermore, comparative experiments among proportional-integral-differential, iterative learning control (ILC), and the proposed NNC controller are conducted. The results consistently validate that NNC can basically achieve excellent contouring motion performance as ILC, significantly without need of motion repetition and iteration. Due to the implementation convenience and excellent prediction/compensation ability, the proposed NNC would have good potential in industrial mechatronic applications.
doi_str_mv 10.1109/TMECH.2020.2975343
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2414533983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9005235</ieee_id><sourcerecordid>2414533983</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-5d556713d89fc796533339dd1dc2d6f49d7e606773060c49445bc46978e5b3b3</originalsourceid><addsrcrecordid>eNotjc1OwzAQhC0EEqXwAnCxxDllHdtJfEShP0gNICgStyiNN5JLGgc7Uenbk7bsZXZ2Ps0Scstgwhioh1U2TReTEEKYhCqWXPAzMmJKsACY-Dofdkh4IASXl-TK-w0ACAZsRJonxJbO3z_pC_auqAfpdtZ90zeH2pSdsQ0tGk1niLqyblc4TVO7bbHxxTEcjge2NP7gsr7uTPFrPM3sMU5t0zlb04-973Drr8lFVdQeb_51TFaz6SpdBMvX-XP6uAxMCLwLpJYyihnXiarKWEWSD6O0ZroMdVQJpWOMIIpjDhGUQgkh16WIVJygXPM1H5P7U23r7E-Pvss3tnfN8DEPBRNDnUr4QN2dKIOIeevMtnD7XAHIkEv-B8beZIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414533983</pqid></control><display><type>article</type><title>Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Chuxiong ; Ou, Tiansheng ; Chang, Haonan ; Zhu, Yu ; Zhu, Limin</creator><creatorcontrib>Hu, Chuxiong ; Ou, Tiansheng ; Chang, Haonan ; Zhu, Yu ; Zhu, Limin</creatorcontrib><description>This article proposes a gated recurrent unit (GRU) neural network prediction and compensation (NNC) strategy for precision multiaxis motion control systems with contouring performance orientation. First, some characteristic contouring tasks are carried out on a multiaxis linear-motor-driven motion system, and the true contouring error values obtained by the Newton numerical calculation method are used as the training data of a developed artificial GRU neural network. Essentially, the proposed GRU neural network structure can be viewed as a data-based black-box error model, which can capture the dynamic characteristics of contouring motion rather accurately. The well-trained GRU network can predict the contouring error precisely even under the tasks those have not been conducted during the training session. Moreover, the predicted contouring error is compensated into the reference contour as feedforward compensation to improve the final contouring performance. Comparison between the predicted contouring error and the actual contouring error practically proves the effective prediction ability of the proposed GRU neural network. Furthermore, comparative experiments among proportional-integral-differential, iterative learning control (ILC), and the proposed NNC controller are conducted. The results consistently validate that NNC can basically achieve excellent contouring motion performance as ILC, significantly without need of motion repetition and iteration. Due to the implementation convenience and excellent prediction/compensation ability, the proposed NNC would have good potential in industrial mechatronic applications.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2020.2975343</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Compensation ; contoring accuracy ; Contouring ; Control systems ; Dynamic characteristics ; Error compensation ; error prediction ; feedforward compensation ; Feedforward control ; Feedforward systems ; IEEE transactions ; Iterative methods ; Logic gates ; Mechatronics ; Motion control ; Motion systems ; Multiaxis ; multiaxis motion control ; Neural network learning ; Neural networks ; Training</subject><ispartof>IEEE/ASME transactions on mechatronics, 2020-06, Vol.25 (3), p.1377-1388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3194-6731 ; 0000-0003-0791-2929 ; 0000-0002-3504-3065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9005235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9005235$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Chuxiong</creatorcontrib><creatorcontrib>Ou, Tiansheng</creatorcontrib><creatorcontrib>Chang, Haonan</creatorcontrib><creatorcontrib>Zhu, Yu</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><title>Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This article proposes a gated recurrent unit (GRU) neural network prediction and compensation (NNC) strategy for precision multiaxis motion control systems with contouring performance orientation. First, some characteristic contouring tasks are carried out on a multiaxis linear-motor-driven motion system, and the true contouring error values obtained by the Newton numerical calculation method are used as the training data of a developed artificial GRU neural network. Essentially, the proposed GRU neural network structure can be viewed as a data-based black-box error model, which can capture the dynamic characteristics of contouring motion rather accurately. The well-trained GRU network can predict the contouring error precisely even under the tasks those have not been conducted during the training session. Moreover, the predicted contouring error is compensated into the reference contour as feedforward compensation to improve the final contouring performance. Comparison between the predicted contouring error and the actual contouring error practically proves the effective prediction ability of the proposed GRU neural network. Furthermore, comparative experiments among proportional-integral-differential, iterative learning control (ILC), and the proposed NNC controller are conducted. The results consistently validate that NNC can basically achieve excellent contouring motion performance as ILC, significantly without need of motion repetition and iteration. Due to the implementation convenience and excellent prediction/compensation ability, the proposed NNC would have good potential in industrial mechatronic applications.</description><subject>Artificial neural networks</subject><subject>Compensation</subject><subject>contoring accuracy</subject><subject>Contouring</subject><subject>Control systems</subject><subject>Dynamic characteristics</subject><subject>Error compensation</subject><subject>error prediction</subject><subject>feedforward compensation</subject><subject>Feedforward control</subject><subject>Feedforward systems</subject><subject>IEEE transactions</subject><subject>Iterative methods</subject><subject>Logic gates</subject><subject>Mechatronics</subject><subject>Motion control</subject><subject>Motion systems</subject><subject>Multiaxis</subject><subject>multiaxis motion control</subject><subject>Neural network learning</subject><subject>Neural networks</subject><subject>Training</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjc1OwzAQhC0EEqXwAnCxxDllHdtJfEShP0gNICgStyiNN5JLGgc7Uenbk7bsZXZ2Ps0Scstgwhioh1U2TReTEEKYhCqWXPAzMmJKsACY-Dofdkh4IASXl-TK-w0ACAZsRJonxJbO3z_pC_auqAfpdtZ90zeH2pSdsQ0tGk1niLqyblc4TVO7bbHxxTEcjge2NP7gsr7uTPFrPM3sMU5t0zlb04-973Drr8lFVdQeb_51TFaz6SpdBMvX-XP6uAxMCLwLpJYyihnXiarKWEWSD6O0ZroMdVQJpWOMIIpjDhGUQgkh16WIVJygXPM1H5P7U23r7E-Pvss3tnfN8DEPBRNDnUr4QN2dKIOIeevMtnD7XAHIkEv-B8beZIA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Hu, Chuxiong</creator><creator>Ou, Tiansheng</creator><creator>Chang, Haonan</creator><creator>Zhu, Yu</creator><creator>Zhu, Limin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid><orcidid>https://orcid.org/0000-0003-0791-2929</orcidid><orcidid>https://orcid.org/0000-0002-3504-3065</orcidid></search><sort><creationdate>202006</creationdate><title>Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems</title><author>Hu, Chuxiong ; Ou, Tiansheng ; Chang, Haonan ; Zhu, Yu ; Zhu, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-5d556713d89fc796533339dd1dc2d6f49d7e606773060c49445bc46978e5b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Compensation</topic><topic>contoring accuracy</topic><topic>Contouring</topic><topic>Control systems</topic><topic>Dynamic characteristics</topic><topic>Error compensation</topic><topic>error prediction</topic><topic>feedforward compensation</topic><topic>Feedforward control</topic><topic>Feedforward systems</topic><topic>IEEE transactions</topic><topic>Iterative methods</topic><topic>Logic gates</topic><topic>Mechatronics</topic><topic>Motion control</topic><topic>Motion systems</topic><topic>Multiaxis</topic><topic>multiaxis motion control</topic><topic>Neural network learning</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Chuxiong</creatorcontrib><creatorcontrib>Ou, Tiansheng</creatorcontrib><creatorcontrib>Chang, Haonan</creatorcontrib><creatorcontrib>Zhu, Yu</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Chuxiong</au><au>Ou, Tiansheng</au><au>Chang, Haonan</au><au>Zhu, Yu</au><au>Zhu, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2020-06</date><risdate>2020</risdate><volume>25</volume><issue>3</issue><spage>1377</spage><epage>1388</epage><pages>1377-1388</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This article proposes a gated recurrent unit (GRU) neural network prediction and compensation (NNC) strategy for precision multiaxis motion control systems with contouring performance orientation. First, some characteristic contouring tasks are carried out on a multiaxis linear-motor-driven motion system, and the true contouring error values obtained by the Newton numerical calculation method are used as the training data of a developed artificial GRU neural network. Essentially, the proposed GRU neural network structure can be viewed as a data-based black-box error model, which can capture the dynamic characteristics of contouring motion rather accurately. The well-trained GRU network can predict the contouring error precisely even under the tasks those have not been conducted during the training session. Moreover, the predicted contouring error is compensated into the reference contour as feedforward compensation to improve the final contouring performance. Comparison between the predicted contouring error and the actual contouring error practically proves the effective prediction ability of the proposed GRU neural network. Furthermore, comparative experiments among proportional-integral-differential, iterative learning control (ILC), and the proposed NNC controller are conducted. The results consistently validate that NNC can basically achieve excellent contouring motion performance as ILC, significantly without need of motion repetition and iteration. Due to the implementation convenience and excellent prediction/compensation ability, the proposed NNC would have good potential in industrial mechatronic applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2020.2975343</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid><orcidid>https://orcid.org/0000-0003-0791-2929</orcidid><orcidid>https://orcid.org/0000-0002-3504-3065</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2020-06, Vol.25 (3), p.1377-1388
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_2414533983
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Compensation
contoring accuracy
Contouring
Control systems
Dynamic characteristics
Error compensation
error prediction
feedforward compensation
Feedforward control
Feedforward systems
IEEE transactions
Iterative methods
Logic gates
Mechatronics
Motion control
Motion systems
Multiaxis
multiaxis motion control
Neural network learning
Neural networks
Training
title Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20GRU%20Neural%20Network%20Prediction%20and%20Feedforward%20Compensation%20for%20Precision%20Multiaxis%20Motion%20Control%20Systems&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Hu,%20Chuxiong&rft.date=2020-06&rft.volume=25&rft.issue=3&rft.spage=1377&rft.epage=1388&rft.pages=1377-1388&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2020.2975343&rft_dat=%3Cproquest_RIE%3E2414533983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414533983&rft_id=info:pmid/&rft_ieee_id=9005235&rfr_iscdi=true