Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems
This article proposes a gated recurrent unit (GRU) neural network prediction and compensation (NNC) strategy for precision multiaxis motion control systems with contouring performance orientation. First, some characteristic contouring tasks are carried out on a multiaxis linear-motor-driven motion s...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2020-06, Vol.25 (3), p.1377-1388 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1388 |
---|---|
container_issue | 3 |
container_start_page | 1377 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 25 |
creator | Hu, Chuxiong Ou, Tiansheng Chang, Haonan Zhu, Yu Zhu, Limin |
description | This article proposes a gated recurrent unit (GRU) neural network prediction and compensation (NNC) strategy for precision multiaxis motion control systems with contouring performance orientation. First, some characteristic contouring tasks are carried out on a multiaxis linear-motor-driven motion system, and the true contouring error values obtained by the Newton numerical calculation method are used as the training data of a developed artificial GRU neural network. Essentially, the proposed GRU neural network structure can be viewed as a data-based black-box error model, which can capture the dynamic characteristics of contouring motion rather accurately. The well-trained GRU network can predict the contouring error precisely even under the tasks those have not been conducted during the training session. Moreover, the predicted contouring error is compensated into the reference contour as feedforward compensation to improve the final contouring performance. Comparison between the predicted contouring error and the actual contouring error practically proves the effective prediction ability of the proposed GRU neural network. Furthermore, comparative experiments among proportional-integral-differential, iterative learning control (ILC), and the proposed NNC controller are conducted. The results consistently validate that NNC can basically achieve excellent contouring motion performance as ILC, significantly without need of motion repetition and iteration. Due to the implementation convenience and excellent prediction/compensation ability, the proposed NNC would have good potential in industrial mechatronic applications. |
doi_str_mv | 10.1109/TMECH.2020.2975343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2414533983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9005235</ieee_id><sourcerecordid>2414533983</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-5d556713d89fc796533339dd1dc2d6f49d7e606773060c49445bc46978e5b3b3</originalsourceid><addsrcrecordid>eNotjc1OwzAQhC0EEqXwAnCxxDllHdtJfEShP0gNICgStyiNN5JLGgc7Uenbk7bsZXZ2Ps0Scstgwhioh1U2TReTEEKYhCqWXPAzMmJKsACY-Dofdkh4IASXl-TK-w0ACAZsRJonxJbO3z_pC_auqAfpdtZ90zeH2pSdsQ0tGk1niLqyblc4TVO7bbHxxTEcjge2NP7gsr7uTPFrPM3sMU5t0zlb04-973Drr8lFVdQeb_51TFaz6SpdBMvX-XP6uAxMCLwLpJYyihnXiarKWEWSD6O0ZroMdVQJpWOMIIpjDhGUQgkh16WIVJygXPM1H5P7U23r7E-Pvss3tnfN8DEPBRNDnUr4QN2dKIOIeevMtnD7XAHIkEv-B8beZIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414533983</pqid></control><display><type>article</type><title>Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Chuxiong ; Ou, Tiansheng ; Chang, Haonan ; Zhu, Yu ; Zhu, Limin</creator><creatorcontrib>Hu, Chuxiong ; Ou, Tiansheng ; Chang, Haonan ; Zhu, Yu ; Zhu, Limin</creatorcontrib><description>This article proposes a gated recurrent unit (GRU) neural network prediction and compensation (NNC) strategy for precision multiaxis motion control systems with contouring performance orientation. First, some characteristic contouring tasks are carried out on a multiaxis linear-motor-driven motion system, and the true contouring error values obtained by the Newton numerical calculation method are used as the training data of a developed artificial GRU neural network. Essentially, the proposed GRU neural network structure can be viewed as a data-based black-box error model, which can capture the dynamic characteristics of contouring motion rather accurately. The well-trained GRU network can predict the contouring error precisely even under the tasks those have not been conducted during the training session. Moreover, the predicted contouring error is compensated into the reference contour as feedforward compensation to improve the final contouring performance. Comparison between the predicted contouring error and the actual contouring error practically proves the effective prediction ability of the proposed GRU neural network. Furthermore, comparative experiments among proportional-integral-differential, iterative learning control (ILC), and the proposed NNC controller are conducted. The results consistently validate that NNC can basically achieve excellent contouring motion performance as ILC, significantly without need of motion repetition and iteration. Due to the implementation convenience and excellent prediction/compensation ability, the proposed NNC would have good potential in industrial mechatronic applications.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2020.2975343</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Compensation ; contoring accuracy ; Contouring ; Control systems ; Dynamic characteristics ; Error compensation ; error prediction ; feedforward compensation ; Feedforward control ; Feedforward systems ; IEEE transactions ; Iterative methods ; Logic gates ; Mechatronics ; Motion control ; Motion systems ; Multiaxis ; multiaxis motion control ; Neural network learning ; Neural networks ; Training</subject><ispartof>IEEE/ASME transactions on mechatronics, 2020-06, Vol.25 (3), p.1377-1388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3194-6731 ; 0000-0003-0791-2929 ; 0000-0002-3504-3065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9005235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9005235$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Chuxiong</creatorcontrib><creatorcontrib>Ou, Tiansheng</creatorcontrib><creatorcontrib>Chang, Haonan</creatorcontrib><creatorcontrib>Zhu, Yu</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><title>Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This article proposes a gated recurrent unit (GRU) neural network prediction and compensation (NNC) strategy for precision multiaxis motion control systems with contouring performance orientation. First, some characteristic contouring tasks are carried out on a multiaxis linear-motor-driven motion system, and the true contouring error values obtained by the Newton numerical calculation method are used as the training data of a developed artificial GRU neural network. Essentially, the proposed GRU neural network structure can be viewed as a data-based black-box error model, which can capture the dynamic characteristics of contouring motion rather accurately. The well-trained GRU network can predict the contouring error precisely even under the tasks those have not been conducted during the training session. Moreover, the predicted contouring error is compensated into the reference contour as feedforward compensation to improve the final contouring performance. Comparison between the predicted contouring error and the actual contouring error practically proves the effective prediction ability of the proposed GRU neural network. Furthermore, comparative experiments among proportional-integral-differential, iterative learning control (ILC), and the proposed NNC controller are conducted. The results consistently validate that NNC can basically achieve excellent contouring motion performance as ILC, significantly without need of motion repetition and iteration. Due to the implementation convenience and excellent prediction/compensation ability, the proposed NNC would have good potential in industrial mechatronic applications.</description><subject>Artificial neural networks</subject><subject>Compensation</subject><subject>contoring accuracy</subject><subject>Contouring</subject><subject>Control systems</subject><subject>Dynamic characteristics</subject><subject>Error compensation</subject><subject>error prediction</subject><subject>feedforward compensation</subject><subject>Feedforward control</subject><subject>Feedforward systems</subject><subject>IEEE transactions</subject><subject>Iterative methods</subject><subject>Logic gates</subject><subject>Mechatronics</subject><subject>Motion control</subject><subject>Motion systems</subject><subject>Multiaxis</subject><subject>multiaxis motion control</subject><subject>Neural network learning</subject><subject>Neural networks</subject><subject>Training</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjc1OwzAQhC0EEqXwAnCxxDllHdtJfEShP0gNICgStyiNN5JLGgc7Uenbk7bsZXZ2Ps0Scstgwhioh1U2TReTEEKYhCqWXPAzMmJKsACY-Dofdkh4IASXl-TK-w0ACAZsRJonxJbO3z_pC_auqAfpdtZ90zeH2pSdsQ0tGk1niLqyblc4TVO7bbHxxTEcjge2NP7gsr7uTPFrPM3sMU5t0zlb04-973Drr8lFVdQeb_51TFaz6SpdBMvX-XP6uAxMCLwLpJYyihnXiarKWEWSD6O0ZroMdVQJpWOMIIpjDhGUQgkh16WIVJygXPM1H5P7U23r7E-Pvss3tnfN8DEPBRNDnUr4QN2dKIOIeevMtnD7XAHIkEv-B8beZIA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Hu, Chuxiong</creator><creator>Ou, Tiansheng</creator><creator>Chang, Haonan</creator><creator>Zhu, Yu</creator><creator>Zhu, Limin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid><orcidid>https://orcid.org/0000-0003-0791-2929</orcidid><orcidid>https://orcid.org/0000-0002-3504-3065</orcidid></search><sort><creationdate>202006</creationdate><title>Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems</title><author>Hu, Chuxiong ; Ou, Tiansheng ; Chang, Haonan ; Zhu, Yu ; Zhu, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-5d556713d89fc796533339dd1dc2d6f49d7e606773060c49445bc46978e5b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Compensation</topic><topic>contoring accuracy</topic><topic>Contouring</topic><topic>Control systems</topic><topic>Dynamic characteristics</topic><topic>Error compensation</topic><topic>error prediction</topic><topic>feedforward compensation</topic><topic>Feedforward control</topic><topic>Feedforward systems</topic><topic>IEEE transactions</topic><topic>Iterative methods</topic><topic>Logic gates</topic><topic>Mechatronics</topic><topic>Motion control</topic><topic>Motion systems</topic><topic>Multiaxis</topic><topic>multiaxis motion control</topic><topic>Neural network learning</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Chuxiong</creatorcontrib><creatorcontrib>Ou, Tiansheng</creatorcontrib><creatorcontrib>Chang, Haonan</creatorcontrib><creatorcontrib>Zhu, Yu</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Chuxiong</au><au>Ou, Tiansheng</au><au>Chang, Haonan</au><au>Zhu, Yu</au><au>Zhu, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2020-06</date><risdate>2020</risdate><volume>25</volume><issue>3</issue><spage>1377</spage><epage>1388</epage><pages>1377-1388</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This article proposes a gated recurrent unit (GRU) neural network prediction and compensation (NNC) strategy for precision multiaxis motion control systems with contouring performance orientation. First, some characteristic contouring tasks are carried out on a multiaxis linear-motor-driven motion system, and the true contouring error values obtained by the Newton numerical calculation method are used as the training data of a developed artificial GRU neural network. Essentially, the proposed GRU neural network structure can be viewed as a data-based black-box error model, which can capture the dynamic characteristics of contouring motion rather accurately. The well-trained GRU network can predict the contouring error precisely even under the tasks those have not been conducted during the training session. Moreover, the predicted contouring error is compensated into the reference contour as feedforward compensation to improve the final contouring performance. Comparison between the predicted contouring error and the actual contouring error practically proves the effective prediction ability of the proposed GRU neural network. Furthermore, comparative experiments among proportional-integral-differential, iterative learning control (ILC), and the proposed NNC controller are conducted. The results consistently validate that NNC can basically achieve excellent contouring motion performance as ILC, significantly without need of motion repetition and iteration. Due to the implementation convenience and excellent prediction/compensation ability, the proposed NNC would have good potential in industrial mechatronic applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2020.2975343</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid><orcidid>https://orcid.org/0000-0003-0791-2929</orcidid><orcidid>https://orcid.org/0000-0002-3504-3065</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2020-06, Vol.25 (3), p.1377-1388 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_2414533983 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Compensation contoring accuracy Contouring Control systems Dynamic characteristics Error compensation error prediction feedforward compensation Feedforward control Feedforward systems IEEE transactions Iterative methods Logic gates Mechatronics Motion control Motion systems Multiaxis multiaxis motion control Neural network learning Neural networks Training |
title | Deep GRU Neural Network Prediction and Feedforward Compensation for Precision Multiaxis Motion Control Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20GRU%20Neural%20Network%20Prediction%20and%20Feedforward%20Compensation%20for%20Precision%20Multiaxis%20Motion%20Control%20Systems&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Hu,%20Chuxiong&rft.date=2020-06&rft.volume=25&rft.issue=3&rft.spage=1377&rft.epage=1388&rft.pages=1377-1388&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2020.2975343&rft_dat=%3Cproquest_RIE%3E2414533983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414533983&rft_id=info:pmid/&rft_ieee_id=9005235&rfr_iscdi=true |