Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems
In this paper, differential games with incomplete information, or Bayesian games, are formulated for multiagent continuous-time dynamical systems in a communication graph. These new Bayesian graphical games model the situation where the agents are uncertain about their actual payoff functions and mu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control of network systems 2020-06, Vol.7 (2), p.1028-1039 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1039 |
---|---|
container_issue | 2 |
container_start_page | 1028 |
container_title | IEEE transactions on control of network systems |
container_volume | 7 |
creator | Lopez, Victor G. Wan, Yan Lewis, Frank L. |
description | In this paper, differential games with incomplete information, or Bayesian games, are formulated for multiagent continuous-time dynamical systems in a communication graph. These new Bayesian graphical games model the situation where the agents are uncertain about their actual payoff functions and must employ the evidence observed from the behavior of other agents to improve their estimation of the real setting of their environment. Two different solutions are proposed for the game. First, the agents play their best response strategies with respect to the policies of their neighbors; then, the agents prepare themselves for the worst-case neighbor policies. A tight relationship between the beliefs of an agent and its distributed control policy is established. Two belief update methodologies are proposed for the agents to review their strategies using information obtained from the graph topology. |
doi_str_mv | 10.1109/TCNS.2019.2927201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2414533478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8756032</ieee_id><sourcerecordid>2414533478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-68b34062509d2e37f0b7a0ca158181628b38a1d5c6c709e342fed39ed4445e543</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGo_gHgJeN6av5vsUatWQeuh9RzS7CxN7W5qskXWT-_WFvE0b5j35sEPoUtKxpSS4mYxmc3HjNBizAqmenGCBowzmUmtyOk_fY5GKa0JIZTJfucD9HpnO0jeNnga7Xblnd3gqa0h4SpEPO8at4qh8d-29aHBvsEzaL9C_Eg4VPi-a2z9G5l3qYU6XaCzym4SjI5ziN4fHxaTp-zlbfo8uX3JHOd5m-V6yQXJmSRFyYCriiyVJc5SqammOevP2tJSutwpUgAXrIKSF1AKISRIwYfo-vB3G8PnDlJr1mEXm77SMEGF5Fwo3bvoweViSClCZbbR1zZ2hhKzB2f24MwenDmC6zNXh4wHgD-_VjInnPEfOhBoXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414533478</pqid></control><display><type>article</type><title>Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Lopez, Victor G. ; Wan, Yan ; Lewis, Frank L.</creator><creatorcontrib>Lopez, Victor G. ; Wan, Yan ; Lewis, Frank L.</creatorcontrib><description>In this paper, differential games with incomplete information, or Bayesian games, are formulated for multiagent continuous-time dynamical systems in a communication graph. These new Bayesian graphical games model the situation where the agents are uncertain about their actual payoff functions and must employ the evidence observed from the behavior of other agents to improve their estimation of the real setting of their environment. Two different solutions are proposed for the game. First, the agents play their best response strategies with respect to the policies of their neighbors; then, the agents prepare themselves for the worst-case neighbor policies. A tight relationship between the beliefs of an agent and its distributed control policy is established. Two belief update methodologies are proposed for the agents to review their strategies using information obtained from the graph topology.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2019.2927201</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayes methods ; Bayesian analysis ; Bayesian games ; Control systems ; Differential games ; distributed control ; Dynamical systems ; Game theory ; Games ; graphical games ; Multiagent systems ; Nash equilibrium ; Policies ; Synchronism ; Synchronization ; Topology</subject><ispartof>IEEE transactions on control of network systems, 2020-06, Vol.7 (2), p.1028-1039</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-68b34062509d2e37f0b7a0ca158181628b38a1d5c6c709e342fed39ed4445e543</citedby><cites>FETCH-LOGICAL-c336t-68b34062509d2e37f0b7a0ca158181628b38a1d5c6c709e342fed39ed4445e543</cites><orcidid>0000-0003-4074-1615 ; 0000-0002-7508-5833 ; 0000-0003-3989-4091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8756032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8756032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lopez, Victor G.</creatorcontrib><creatorcontrib>Wan, Yan</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><title>Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>In this paper, differential games with incomplete information, or Bayesian games, are formulated for multiagent continuous-time dynamical systems in a communication graph. These new Bayesian graphical games model the situation where the agents are uncertain about their actual payoff functions and must employ the evidence observed from the behavior of other agents to improve their estimation of the real setting of their environment. Two different solutions are proposed for the game. First, the agents play their best response strategies with respect to the policies of their neighbors; then, the agents prepare themselves for the worst-case neighbor policies. A tight relationship between the beliefs of an agent and its distributed control policy is established. Two belief update methodologies are proposed for the agents to review their strategies using information obtained from the graph topology.</description><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian games</subject><subject>Control systems</subject><subject>Differential games</subject><subject>distributed control</subject><subject>Dynamical systems</subject><subject>Game theory</subject><subject>Games</subject><subject>graphical games</subject><subject>Multiagent systems</subject><subject>Nash equilibrium</subject><subject>Policies</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Topology</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWGo_gHgJeN6av5vsUatWQeuh9RzS7CxN7W5qskXWT-_WFvE0b5j35sEPoUtKxpSS4mYxmc3HjNBizAqmenGCBowzmUmtyOk_fY5GKa0JIZTJfucD9HpnO0jeNnga7Xblnd3gqa0h4SpEPO8at4qh8d-29aHBvsEzaL9C_Eg4VPi-a2z9G5l3qYU6XaCzym4SjI5ziN4fHxaTp-zlbfo8uX3JHOd5m-V6yQXJmSRFyYCriiyVJc5SqammOevP2tJSutwpUgAXrIKSF1AKISRIwYfo-vB3G8PnDlJr1mEXm77SMEGF5Fwo3bvoweViSClCZbbR1zZ2hhKzB2f24MwenDmC6zNXh4wHgD-_VjInnPEfOhBoXw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lopez, Victor G.</creator><creator>Wan, Yan</creator><creator>Lewis, Frank L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4074-1615</orcidid><orcidid>https://orcid.org/0000-0002-7508-5833</orcidid><orcidid>https://orcid.org/0000-0003-3989-4091</orcidid></search><sort><creationdate>20200601</creationdate><title>Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems</title><author>Lopez, Victor G. ; Wan, Yan ; Lewis, Frank L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-68b34062509d2e37f0b7a0ca158181628b38a1d5c6c709e342fed39ed4445e543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian games</topic><topic>Control systems</topic><topic>Differential games</topic><topic>distributed control</topic><topic>Dynamical systems</topic><topic>Game theory</topic><topic>Games</topic><topic>graphical games</topic><topic>Multiagent systems</topic><topic>Nash equilibrium</topic><topic>Policies</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Victor G.</creatorcontrib><creatorcontrib>Wan, Yan</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez, Victor G.</au><au>Wan, Yan</au><au>Lewis, Frank L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>7</volume><issue>2</issue><spage>1028</spage><epage>1039</epage><pages>1028-1039</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>In this paper, differential games with incomplete information, or Bayesian games, are formulated for multiagent continuous-time dynamical systems in a communication graph. These new Bayesian graphical games model the situation where the agents are uncertain about their actual payoff functions and must employ the evidence observed from the behavior of other agents to improve their estimation of the real setting of their environment. Two different solutions are proposed for the game. First, the agents play their best response strategies with respect to the policies of their neighbors; then, the agents prepare themselves for the worst-case neighbor policies. A tight relationship between the beliefs of an agent and its distributed control policy is established. Two belief update methodologies are proposed for the agents to review their strategies using information obtained from the graph topology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2019.2927201</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4074-1615</orcidid><orcidid>https://orcid.org/0000-0002-7508-5833</orcidid><orcidid>https://orcid.org/0000-0003-3989-4091</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-5870 |
ispartof | IEEE transactions on control of network systems, 2020-06, Vol.7 (2), p.1028-1039 |
issn | 2325-5870 2325-5870 2372-2533 |
language | eng |
recordid | cdi_proquest_journals_2414533478 |
source | IEEE Electronic Library (IEL) |
subjects | Bayes methods Bayesian analysis Bayesian games Control systems Differential games distributed control Dynamical systems Game theory Games graphical games Multiagent systems Nash equilibrium Policies Synchronism Synchronization Topology |
title | Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Graphical%20Games%20for%20Synchronization%20in%20Networks%20of%20Dynamical%20Systems&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Lopez,%20Victor%20G.&rft.date=2020-06-01&rft.volume=7&rft.issue=2&rft.spage=1028&rft.epage=1039&rft.pages=1028-1039&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2019.2927201&rft_dat=%3Cproquest_RIE%3E2414533478%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414533478&rft_id=info:pmid/&rft_ieee_id=8756032&rfr_iscdi=true |