Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems

In this paper, differential games with incomplete information, or Bayesian games, are formulated for multiagent continuous-time dynamical systems in a communication graph. These new Bayesian graphical games model the situation where the agents are uncertain about their actual payoff functions and mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control of network systems 2020-06, Vol.7 (2), p.1028-1039
Hauptverfasser: Lopez, Victor G., Wan, Yan, Lewis, Frank L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1039
container_issue 2
container_start_page 1028
container_title IEEE transactions on control of network systems
container_volume 7
creator Lopez, Victor G.
Wan, Yan
Lewis, Frank L.
description In this paper, differential games with incomplete information, or Bayesian games, are formulated for multiagent continuous-time dynamical systems in a communication graph. These new Bayesian graphical games model the situation where the agents are uncertain about their actual payoff functions and must employ the evidence observed from the behavior of other agents to improve their estimation of the real setting of their environment. Two different solutions are proposed for the game. First, the agents play their best response strategies with respect to the policies of their neighbors; then, the agents prepare themselves for the worst-case neighbor policies. A tight relationship between the beliefs of an agent and its distributed control policy is established. Two belief update methodologies are proposed for the agents to review their strategies using information obtained from the graph topology.
doi_str_mv 10.1109/TCNS.2019.2927201
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2414533478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8756032</ieee_id><sourcerecordid>2414533478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-68b34062509d2e37f0b7a0ca158181628b38a1d5c6c709e342fed39ed4445e543</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGo_gHgJeN6av5vsUatWQeuh9RzS7CxN7W5qskXWT-_WFvE0b5j35sEPoUtKxpSS4mYxmc3HjNBizAqmenGCBowzmUmtyOk_fY5GKa0JIZTJfucD9HpnO0jeNnga7Xblnd3gqa0h4SpEPO8at4qh8d-29aHBvsEzaL9C_Eg4VPi-a2z9G5l3qYU6XaCzym4SjI5ziN4fHxaTp-zlbfo8uX3JHOd5m-V6yQXJmSRFyYCriiyVJc5SqammOevP2tJSutwpUgAXrIKSF1AKISRIwYfo-vB3G8PnDlJr1mEXm77SMEGF5Fwo3bvoweViSClCZbbR1zZ2hhKzB2f24MwenDmC6zNXh4wHgD-_VjInnPEfOhBoXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414533478</pqid></control><display><type>article</type><title>Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Lopez, Victor G. ; Wan, Yan ; Lewis, Frank L.</creator><creatorcontrib>Lopez, Victor G. ; Wan, Yan ; Lewis, Frank L.</creatorcontrib><description>In this paper, differential games with incomplete information, or Bayesian games, are formulated for multiagent continuous-time dynamical systems in a communication graph. These new Bayesian graphical games model the situation where the agents are uncertain about their actual payoff functions and must employ the evidence observed from the behavior of other agents to improve their estimation of the real setting of their environment. Two different solutions are proposed for the game. First, the agents play their best response strategies with respect to the policies of their neighbors; then, the agents prepare themselves for the worst-case neighbor policies. A tight relationship between the beliefs of an agent and its distributed control policy is established. Two belief update methodologies are proposed for the agents to review their strategies using information obtained from the graph topology.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2019.2927201</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayes methods ; Bayesian analysis ; Bayesian games ; Control systems ; Differential games ; distributed control ; Dynamical systems ; Game theory ; Games ; graphical games ; Multiagent systems ; Nash equilibrium ; Policies ; Synchronism ; Synchronization ; Topology</subject><ispartof>IEEE transactions on control of network systems, 2020-06, Vol.7 (2), p.1028-1039</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-68b34062509d2e37f0b7a0ca158181628b38a1d5c6c709e342fed39ed4445e543</citedby><cites>FETCH-LOGICAL-c336t-68b34062509d2e37f0b7a0ca158181628b38a1d5c6c709e342fed39ed4445e543</cites><orcidid>0000-0003-4074-1615 ; 0000-0002-7508-5833 ; 0000-0003-3989-4091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8756032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8756032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lopez, Victor G.</creatorcontrib><creatorcontrib>Wan, Yan</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><title>Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>In this paper, differential games with incomplete information, or Bayesian games, are formulated for multiagent continuous-time dynamical systems in a communication graph. These new Bayesian graphical games model the situation where the agents are uncertain about their actual payoff functions and must employ the evidence observed from the behavior of other agents to improve their estimation of the real setting of their environment. Two different solutions are proposed for the game. First, the agents play their best response strategies with respect to the policies of their neighbors; then, the agents prepare themselves for the worst-case neighbor policies. A tight relationship between the beliefs of an agent and its distributed control policy is established. Two belief update methodologies are proposed for the agents to review their strategies using information obtained from the graph topology.</description><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian games</subject><subject>Control systems</subject><subject>Differential games</subject><subject>distributed control</subject><subject>Dynamical systems</subject><subject>Game theory</subject><subject>Games</subject><subject>graphical games</subject><subject>Multiagent systems</subject><subject>Nash equilibrium</subject><subject>Policies</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Topology</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWGo_gHgJeN6av5vsUatWQeuh9RzS7CxN7W5qskXWT-_WFvE0b5j35sEPoUtKxpSS4mYxmc3HjNBizAqmenGCBowzmUmtyOk_fY5GKa0JIZTJfucD9HpnO0jeNnga7Xblnd3gqa0h4SpEPO8at4qh8d-29aHBvsEzaL9C_Eg4VPi-a2z9G5l3qYU6XaCzym4SjI5ziN4fHxaTp-zlbfo8uX3JHOd5m-V6yQXJmSRFyYCriiyVJc5SqammOevP2tJSutwpUgAXrIKSF1AKISRIwYfo-vB3G8PnDlJr1mEXm77SMEGF5Fwo3bvoweViSClCZbbR1zZ2hhKzB2f24MwenDmC6zNXh4wHgD-_VjInnPEfOhBoXw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lopez, Victor G.</creator><creator>Wan, Yan</creator><creator>Lewis, Frank L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4074-1615</orcidid><orcidid>https://orcid.org/0000-0002-7508-5833</orcidid><orcidid>https://orcid.org/0000-0003-3989-4091</orcidid></search><sort><creationdate>20200601</creationdate><title>Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems</title><author>Lopez, Victor G. ; Wan, Yan ; Lewis, Frank L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-68b34062509d2e37f0b7a0ca158181628b38a1d5c6c709e342fed39ed4445e543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian games</topic><topic>Control systems</topic><topic>Differential games</topic><topic>distributed control</topic><topic>Dynamical systems</topic><topic>Game theory</topic><topic>Games</topic><topic>graphical games</topic><topic>Multiagent systems</topic><topic>Nash equilibrium</topic><topic>Policies</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Victor G.</creatorcontrib><creatorcontrib>Wan, Yan</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez, Victor G.</au><au>Wan, Yan</au><au>Lewis, Frank L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>7</volume><issue>2</issue><spage>1028</spage><epage>1039</epage><pages>1028-1039</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>In this paper, differential games with incomplete information, or Bayesian games, are formulated for multiagent continuous-time dynamical systems in a communication graph. These new Bayesian graphical games model the situation where the agents are uncertain about their actual payoff functions and must employ the evidence observed from the behavior of other agents to improve their estimation of the real setting of their environment. Two different solutions are proposed for the game. First, the agents play their best response strategies with respect to the policies of their neighbors; then, the agents prepare themselves for the worst-case neighbor policies. A tight relationship between the beliefs of an agent and its distributed control policy is established. Two belief update methodologies are proposed for the agents to review their strategies using information obtained from the graph topology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2019.2927201</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4074-1615</orcidid><orcidid>https://orcid.org/0000-0002-7508-5833</orcidid><orcidid>https://orcid.org/0000-0003-3989-4091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2020-06, Vol.7 (2), p.1028-1039
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_proquest_journals_2414533478
source IEEE Electronic Library (IEL)
subjects Bayes methods
Bayesian analysis
Bayesian games
Control systems
Differential games
distributed control
Dynamical systems
Game theory
Games
graphical games
Multiagent systems
Nash equilibrium
Policies
Synchronism
Synchronization
Topology
title Bayesian Graphical Games for Synchronization in Networks of Dynamical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Graphical%20Games%20for%20Synchronization%20in%20Networks%20of%20Dynamical%20Systems&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Lopez,%20Victor%20G.&rft.date=2020-06-01&rft.volume=7&rft.issue=2&rft.spage=1028&rft.epage=1039&rft.pages=1028-1039&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2019.2927201&rft_dat=%3Cproquest_RIE%3E2414533478%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414533478&rft_id=info:pmid/&rft_ieee_id=8756032&rfr_iscdi=true