Weather dependent estimation of continent-wide wind power generation based on spatio-temporal clustering

Europe is facing the challenge of increasing shares of energy from variable renewable sources. Furthermore, it is heading towards a fully integrated electricity market, i.e. a Europe-wide electricity system. The stable operation of this large-scale renewable power system requires detailed informatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in science and research 2017-05, Vol.14, p.131-138
Hauptverfasser: Schyska, Bruno U, Couto, António, von Bremen, Lueder, Estanqueiro, Ana, Heinemann, Detlev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Europe is facing the challenge of increasing shares of energy from variable renewable sources. Furthermore, it is heading towards a fully integrated electricity market, i.e. a Europe-wide electricity system. The stable operation of this large-scale renewable power system requires detailed information on the amount of electricity being transmitted now and in the future. To estimate the actual amount of electricity, upscaling algorithms are applied. Those algorithms – until now – however, only exist for smaller regions (e.g. transmission zones and single wind farms). The aim of this study is to introduce a new approach to estimate Europe-wide wind power generation based on spatio-temporal clustering. We furthermore show that training the upscaling model for different prevailing weather situations allows to further reduce the number of reference sites without losing accuracy.
ISSN:1992-0636
1992-0628
1992-0636
DOI:10.5194/asr-14-131-2017