In situ continuous visible and near-infrared spectroscopy of an alpine snowpack

Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The cryosphere 2017-05, Vol.11 (3), p.1091-1110
Hauptverfasser: Dumont, Marie, Arnaud, Laurent, Picard, Ghislain, Libois, Quentin, Lejeune, Yves, Nabat, Pierre, Voisin, Didier, Morin, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1110
container_issue 3
container_start_page 1091
container_title The cryosphere
container_volume 11
creator Dumont, Marie
Arnaud, Laurent
Picard, Ghislain
Libois, Quentin
Lejeune, Yves
Nabat, Pierre
Voisin, Didier
Morin, Samuel
description Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan dust deposition outbreaks. This study highlights that the resulting intricate variations of spectral albedo can be successfully explained by variations of the following snow surface variables: specific surface area (SSA) of snow, effective light-absorbing impurities content, presence of liquid water and slope. The methodology developed in this study disentangles the effect of these variables on snow spectral albedo. The presence of liquid water at the snow surface results in a spectral shift of the albedo from which melt events can be identified with an occurrence of false detection rate lower than 3.5 %. Snow SSA mostly impacts spectral albedo in the near-infrared range. Impurity deposition mostly impacts the albedo in the visible range but this impact is very dependent on snow SSA and surface slope. Our work thus demonstrates that the SSA estimation from spectral albedo is affected by large uncertainties for a tilted snow surface and medium to high impurity contents and that the estimation of impurity content is also affected by large uncertainties, especially for low values below 50 ng g−1 black carbon equivalent. The proposed methodology opens routes for retrieval of SSA, impurity content, melt events and surface slope from spectral albedo. However, an exhaustive accuracy assessment of the snow black properties retrieval would require more independent in situ measurements and is beyond the scope of the present study. This time series of snow spectral albedo nevertheless already provides a new insight into our understanding of the evolution of snow surface properties.
doi_str_mv 10.5194/tc-11-1091-2017
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2414443941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491170740</galeid><sourcerecordid>A491170740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-bdee2029c7459765d7e94244daddcf02511bfd558c515f06c34d13f6c7ff051f3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsD7WbgOuXEybO5PMNEsRH4WC4GMd0jxKapuMSUbtvzeDghZE7iKX8N3cnHOK4gzwmAIjkyRLgBIwg7LC0O4VI2CMlJhUZP9Xf1gcxbjCuKkYJqPifuZQtKlH0rtkXe_7iN5stIu1RsIp5LQIpXUmiKAVip2WKfgofbdF3mQCiXVnnUbR-fdOyJeT4sCIddSn3-dx8Xxz_XR1V87vb2dXl_NSUkxTuVBaV7hisiWUtQ1VrWb5c0QJpaTBFQVYGEXpVFKgBjeyJgpq08jWGEzB1MfF-de7XfCvvY6Jr3wfXF7JKwKEkJoR-I-CLL-lU9yQH2op1ppnsT4FITc2Sn5JGECLW4IzNf6DyqX0xmb3tLH5fmfgYmdgcFh_pKXoY-Szx4dddvLFyuxuDNrwLtiNCFsOmA_x8iQ5AB_i5UO89SeJGpT_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904758064</pqid></control><display><type>article</type><title>In situ continuous visible and near-infrared spectroscopy of an alpine snowpack</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dumont, Marie ; Arnaud, Laurent ; Picard, Ghislain ; Libois, Quentin ; Lejeune, Yves ; Nabat, Pierre ; Voisin, Didier ; Morin, Samuel</creator><creatorcontrib>Dumont, Marie ; Arnaud, Laurent ; Picard, Ghislain ; Libois, Quentin ; Lejeune, Yves ; Nabat, Pierre ; Voisin, Didier ; Morin, Samuel</creatorcontrib><description>Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan dust deposition outbreaks. This study highlights that the resulting intricate variations of spectral albedo can be successfully explained by variations of the following snow surface variables: specific surface area (SSA) of snow, effective light-absorbing impurities content, presence of liquid water and slope. The methodology developed in this study disentangles the effect of these variables on snow spectral albedo. The presence of liquid water at the snow surface results in a spectral shift of the albedo from which melt events can be identified with an occurrence of false detection rate lower than 3.5 %. Snow SSA mostly impacts spectral albedo in the near-infrared range. Impurity deposition mostly impacts the albedo in the visible range but this impact is very dependent on snow SSA and surface slope. Our work thus demonstrates that the SSA estimation from spectral albedo is affected by large uncertainties for a tilted snow surface and medium to high impurity contents and that the estimation of impurity content is also affected by large uncertainties, especially for low values below 50 ng g−1 black carbon equivalent. The proposed methodology opens routes for retrieval of SSA, impurity content, melt events and surface slope from spectral albedo. However, an exhaustive accuracy assessment of the snow black properties retrieval would require more independent in situ measurements and is beyond the scope of the present study. This time series of snow spectral albedo nevertheless already provides a new insight into our understanding of the evolution of snow surface properties.</description><identifier>ISSN: 1994-0424</identifier><identifier>ISSN: 1994-0416</identifier><identifier>EISSN: 1994-0424</identifier><identifier>EISSN: 1994-0416</identifier><identifier>DOI: 10.5194/tc-11-1091-2017</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Absorption ; Albedo ; Albedo (solar) ; Alpine ecosystems ; Alpine environments ; Analytical methods ; Atmospheric particulates ; Black carbon ; Carbon ; Carbon equivalent ; Deposition ; Dust ; Dust deposition ; Dust storms ; Electromagnetic absorption ; Environmental aspects ; Equivalence ; Evolution ; I.R. radiation ; Ice ; Impurities ; In situ measurement ; Infrared spectra ; Infrared spectroscopy ; Light effects ; Metamorphism ; Methods ; Near infrared radiation ; Near infrared spectroscopy ; Observations ; Outbreaks ; Precipitation ; Retrieval ; Saharan dust ; Slopes ; Snow ; Snowpack ; Solar energy ; Spectral albedo ; Spectroscopy ; Spectrum analysis ; Surface area ; Surface properties ; Time series ; Uncertainty ; Water ; Water surface slope ; Winter</subject><ispartof>The cryosphere, 2017-05, Vol.11 (3), p.1091-1110</ispartof><rights>COPYRIGHT 2017 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-bdee2029c7459765d7e94244daddcf02511bfd558c515f06c34d13f6c7ff051f3</citedby><cites>FETCH-LOGICAL-c505t-bdee2029c7459765d7e94244daddcf02511bfd558c515f06c34d13f6c7ff051f3</cites><orcidid>0000-0002-1781-687X ; 0000-0002-4002-5873 ; 0000-0002-4432-4205 ; 0000-0003-1475-5853 ; 0000-0003-1317-7561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Dumont, Marie</creatorcontrib><creatorcontrib>Arnaud, Laurent</creatorcontrib><creatorcontrib>Picard, Ghislain</creatorcontrib><creatorcontrib>Libois, Quentin</creatorcontrib><creatorcontrib>Lejeune, Yves</creatorcontrib><creatorcontrib>Nabat, Pierre</creatorcontrib><creatorcontrib>Voisin, Didier</creatorcontrib><creatorcontrib>Morin, Samuel</creatorcontrib><title>In situ continuous visible and near-infrared spectroscopy of an alpine snowpack</title><title>The cryosphere</title><description>Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan dust deposition outbreaks. This study highlights that the resulting intricate variations of spectral albedo can be successfully explained by variations of the following snow surface variables: specific surface area (SSA) of snow, effective light-absorbing impurities content, presence of liquid water and slope. The methodology developed in this study disentangles the effect of these variables on snow spectral albedo. The presence of liquid water at the snow surface results in a spectral shift of the albedo from which melt events can be identified with an occurrence of false detection rate lower than 3.5 %. Snow SSA mostly impacts spectral albedo in the near-infrared range. Impurity deposition mostly impacts the albedo in the visible range but this impact is very dependent on snow SSA and surface slope. Our work thus demonstrates that the SSA estimation from spectral albedo is affected by large uncertainties for a tilted snow surface and medium to high impurity contents and that the estimation of impurity content is also affected by large uncertainties, especially for low values below 50 ng g−1 black carbon equivalent. The proposed methodology opens routes for retrieval of SSA, impurity content, melt events and surface slope from spectral albedo. However, an exhaustive accuracy assessment of the snow black properties retrieval would require more independent in situ measurements and is beyond the scope of the present study. This time series of snow spectral albedo nevertheless already provides a new insight into our understanding of the evolution of snow surface properties.</description><subject>Absorption</subject><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Alpine ecosystems</subject><subject>Alpine environments</subject><subject>Analytical methods</subject><subject>Atmospheric particulates</subject><subject>Black carbon</subject><subject>Carbon</subject><subject>Carbon equivalent</subject><subject>Deposition</subject><subject>Dust</subject><subject>Dust deposition</subject><subject>Dust storms</subject><subject>Electromagnetic absorption</subject><subject>Environmental aspects</subject><subject>Equivalence</subject><subject>Evolution</subject><subject>I.R. radiation</subject><subject>Ice</subject><subject>Impurities</subject><subject>In situ measurement</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Light effects</subject><subject>Metamorphism</subject><subject>Methods</subject><subject>Near infrared radiation</subject><subject>Near infrared spectroscopy</subject><subject>Observations</subject><subject>Outbreaks</subject><subject>Precipitation</subject><subject>Retrieval</subject><subject>Saharan dust</subject><subject>Slopes</subject><subject>Snow</subject><subject>Snowpack</subject><subject>Solar energy</subject><subject>Spectral albedo</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Surface area</subject><subject>Surface properties</subject><subject>Time series</subject><subject>Uncertainty</subject><subject>Water</subject><subject>Water surface slope</subject><subject>Winter</subject><issn>1994-0424</issn><issn>1994-0416</issn><issn>1994-0424</issn><issn>1994-0416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtLAzEUhQdRsD7WbgOuXEybO5PMNEsRH4WC4GMd0jxKapuMSUbtvzeDghZE7iKX8N3cnHOK4gzwmAIjkyRLgBIwg7LC0O4VI2CMlJhUZP9Xf1gcxbjCuKkYJqPifuZQtKlH0rtkXe_7iN5stIu1RsIp5LQIpXUmiKAVip2WKfgofbdF3mQCiXVnnUbR-fdOyJeT4sCIddSn3-dx8Xxz_XR1V87vb2dXl_NSUkxTuVBaV7hisiWUtQ1VrWb5c0QJpaTBFQVYGEXpVFKgBjeyJgpq08jWGEzB1MfF-de7XfCvvY6Jr3wfXF7JKwKEkJoR-I-CLL-lU9yQH2op1ppnsT4FITc2Sn5JGECLW4IzNf6DyqX0xmb3tLH5fmfgYmdgcFh_pKXoY-Szx4dddvLFyuxuDNrwLtiNCFsOmA_x8iQ5AB_i5UO89SeJGpT_</recordid><startdate>20170505</startdate><enddate>20170505</enddate><creator>Dumont, Marie</creator><creator>Arnaud, Laurent</creator><creator>Picard, Ghislain</creator><creator>Libois, Quentin</creator><creator>Lejeune, Yves</creator><creator>Nabat, Pierre</creator><creator>Voisin, Didier</creator><creator>Morin, Samuel</creator><general>Copernicus GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-1781-687X</orcidid><orcidid>https://orcid.org/0000-0002-4002-5873</orcidid><orcidid>https://orcid.org/0000-0002-4432-4205</orcidid><orcidid>https://orcid.org/0000-0003-1475-5853</orcidid><orcidid>https://orcid.org/0000-0003-1317-7561</orcidid></search><sort><creationdate>20170505</creationdate><title>In situ continuous visible and near-infrared spectroscopy of an alpine snowpack</title><author>Dumont, Marie ; Arnaud, Laurent ; Picard, Ghislain ; Libois, Quentin ; Lejeune, Yves ; Nabat, Pierre ; Voisin, Didier ; Morin, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-bdee2029c7459765d7e94244daddcf02511bfd558c515f06c34d13f6c7ff051f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Alpine ecosystems</topic><topic>Alpine environments</topic><topic>Analytical methods</topic><topic>Atmospheric particulates</topic><topic>Black carbon</topic><topic>Carbon</topic><topic>Carbon equivalent</topic><topic>Deposition</topic><topic>Dust</topic><topic>Dust deposition</topic><topic>Dust storms</topic><topic>Electromagnetic absorption</topic><topic>Environmental aspects</topic><topic>Equivalence</topic><topic>Evolution</topic><topic>I.R. radiation</topic><topic>Ice</topic><topic>Impurities</topic><topic>In situ measurement</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Light effects</topic><topic>Metamorphism</topic><topic>Methods</topic><topic>Near infrared radiation</topic><topic>Near infrared spectroscopy</topic><topic>Observations</topic><topic>Outbreaks</topic><topic>Precipitation</topic><topic>Retrieval</topic><topic>Saharan dust</topic><topic>Slopes</topic><topic>Snow</topic><topic>Snowpack</topic><topic>Solar energy</topic><topic>Spectral albedo</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Surface area</topic><topic>Surface properties</topic><topic>Time series</topic><topic>Uncertainty</topic><topic>Water</topic><topic>Water surface slope</topic><topic>Winter</topic><toplevel>online_resources</toplevel><creatorcontrib>Dumont, Marie</creatorcontrib><creatorcontrib>Arnaud, Laurent</creatorcontrib><creatorcontrib>Picard, Ghislain</creatorcontrib><creatorcontrib>Libois, Quentin</creatorcontrib><creatorcontrib>Lejeune, Yves</creatorcontrib><creatorcontrib>Nabat, Pierre</creatorcontrib><creatorcontrib>Voisin, Didier</creatorcontrib><creatorcontrib>Morin, Samuel</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>The cryosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumont, Marie</au><au>Arnaud, Laurent</au><au>Picard, Ghislain</au><au>Libois, Quentin</au><au>Lejeune, Yves</au><au>Nabat, Pierre</au><au>Voisin, Didier</au><au>Morin, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ continuous visible and near-infrared spectroscopy of an alpine snowpack</atitle><jtitle>The cryosphere</jtitle><date>2017-05-05</date><risdate>2017</risdate><volume>11</volume><issue>3</issue><spage>1091</spage><epage>1110</epage><pages>1091-1110</pages><issn>1994-0424</issn><issn>1994-0416</issn><eissn>1994-0424</eissn><eissn>1994-0416</eissn><abstract>Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan dust deposition outbreaks. This study highlights that the resulting intricate variations of spectral albedo can be successfully explained by variations of the following snow surface variables: specific surface area (SSA) of snow, effective light-absorbing impurities content, presence of liquid water and slope. The methodology developed in this study disentangles the effect of these variables on snow spectral albedo. The presence of liquid water at the snow surface results in a spectral shift of the albedo from which melt events can be identified with an occurrence of false detection rate lower than 3.5 %. Snow SSA mostly impacts spectral albedo in the near-infrared range. Impurity deposition mostly impacts the albedo in the visible range but this impact is very dependent on snow SSA and surface slope. Our work thus demonstrates that the SSA estimation from spectral albedo is affected by large uncertainties for a tilted snow surface and medium to high impurity contents and that the estimation of impurity content is also affected by large uncertainties, especially for low values below 50 ng g−1 black carbon equivalent. The proposed methodology opens routes for retrieval of SSA, impurity content, melt events and surface slope from spectral albedo. However, an exhaustive accuracy assessment of the snow black properties retrieval would require more independent in situ measurements and is beyond the scope of the present study. This time series of snow spectral albedo nevertheless already provides a new insight into our understanding of the evolution of snow surface properties.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/tc-11-1091-2017</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1781-687X</orcidid><orcidid>https://orcid.org/0000-0002-4002-5873</orcidid><orcidid>https://orcid.org/0000-0002-4432-4205</orcidid><orcidid>https://orcid.org/0000-0003-1475-5853</orcidid><orcidid>https://orcid.org/0000-0003-1317-7561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-0424
ispartof The cryosphere, 2017-05, Vol.11 (3), p.1091-1110
issn 1994-0424
1994-0416
1994-0424
1994-0416
language eng
recordid cdi_proquest_journals_2414443941
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Absorption
Albedo
Albedo (solar)
Alpine ecosystems
Alpine environments
Analytical methods
Atmospheric particulates
Black carbon
Carbon
Carbon equivalent
Deposition
Dust
Dust deposition
Dust storms
Electromagnetic absorption
Environmental aspects
Equivalence
Evolution
I.R. radiation
Ice
Impurities
In situ measurement
Infrared spectra
Infrared spectroscopy
Light effects
Metamorphism
Methods
Near infrared radiation
Near infrared spectroscopy
Observations
Outbreaks
Precipitation
Retrieval
Saharan dust
Slopes
Snow
Snowpack
Solar energy
Spectral albedo
Spectroscopy
Spectrum analysis
Surface area
Surface properties
Time series
Uncertainty
Water
Water surface slope
Winter
title In situ continuous visible and near-infrared spectroscopy of an alpine snowpack
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20continuous%20visible%20and%20near-infrared%20spectroscopy%20of%20an%20alpine%20snowpack&rft.jtitle=The%20cryosphere&rft.au=Dumont,%20Marie&rft.date=2017-05-05&rft.volume=11&rft.issue=3&rft.spage=1091&rft.epage=1110&rft.pages=1091-1110&rft.issn=1994-0424&rft.eissn=1994-0424&rft_id=info:doi/10.5194/tc-11-1091-2017&rft_dat=%3Cgale_proqu%3EA491170740%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904758064&rft_id=info:pmid/&rft_galeid=A491170740&rfr_iscdi=true