In situ continuous visible and near-infrared spectroscopy of an alpine snowpack
Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan du...
Gespeichert in:
Veröffentlicht in: | The cryosphere 2017-05, Vol.11 (3), p.1091-1110 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1110 |
---|---|
container_issue | 3 |
container_start_page | 1091 |
container_title | The cryosphere |
container_volume | 11 |
creator | Dumont, Marie Arnaud, Laurent Picard, Ghislain Libois, Quentin Lejeune, Yves Nabat, Pierre Voisin, Didier Morin, Samuel |
description | Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan dust deposition outbreaks. This study highlights that the resulting intricate variations of spectral albedo can be successfully explained by variations of the following snow surface variables: specific surface area (SSA) of snow, effective light-absorbing impurities content, presence of liquid water and slope. The methodology developed in this study disentangles the effect of these variables on snow spectral albedo. The presence of liquid water at the snow surface results in a spectral shift of the albedo from which melt events can be identified with an occurrence of false detection rate lower than 3.5 %. Snow SSA mostly impacts spectral albedo in the near-infrared range. Impurity deposition mostly impacts the albedo in the visible range but this impact is very dependent on snow SSA and surface slope. Our work thus demonstrates that the SSA estimation from spectral albedo is affected by large uncertainties for a tilted snow surface and medium to high impurity contents and that the estimation of impurity content is also affected by large uncertainties, especially for low values below 50 ng g−1 black carbon equivalent. The proposed methodology opens routes for retrieval of SSA, impurity content, melt events and surface slope from spectral albedo. However, an exhaustive accuracy assessment of the snow black properties retrieval would require more independent in situ measurements and is beyond the scope of the present study. This time series of snow spectral albedo nevertheless already provides a new insight into our understanding of the evolution of snow surface properties. |
doi_str_mv | 10.5194/tc-11-1091-2017 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2414443941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491170740</galeid><sourcerecordid>A491170740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-bdee2029c7459765d7e94244daddcf02511bfd558c515f06c34d13f6c7ff051f3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsD7WbgOuXEybO5PMNEsRH4WC4GMd0jxKapuMSUbtvzeDghZE7iKX8N3cnHOK4gzwmAIjkyRLgBIwg7LC0O4VI2CMlJhUZP9Xf1gcxbjCuKkYJqPifuZQtKlH0rtkXe_7iN5stIu1RsIp5LQIpXUmiKAVip2WKfgofbdF3mQCiXVnnUbR-fdOyJeT4sCIddSn3-dx8Xxz_XR1V87vb2dXl_NSUkxTuVBaV7hisiWUtQ1VrWb5c0QJpaTBFQVYGEXpVFKgBjeyJgpq08jWGEzB1MfF-de7XfCvvY6Jr3wfXF7JKwKEkJoR-I-CLL-lU9yQH2op1ppnsT4FITc2Sn5JGECLW4IzNf6DyqX0xmb3tLH5fmfgYmdgcFh_pKXoY-Szx4dddvLFyuxuDNrwLtiNCFsOmA_x8iQ5AB_i5UO89SeJGpT_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904758064</pqid></control><display><type>article</type><title>In situ continuous visible and near-infrared spectroscopy of an alpine snowpack</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dumont, Marie ; Arnaud, Laurent ; Picard, Ghislain ; Libois, Quentin ; Lejeune, Yves ; Nabat, Pierre ; Voisin, Didier ; Morin, Samuel</creator><creatorcontrib>Dumont, Marie ; Arnaud, Laurent ; Picard, Ghislain ; Libois, Quentin ; Lejeune, Yves ; Nabat, Pierre ; Voisin, Didier ; Morin, Samuel</creatorcontrib><description>Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan dust deposition outbreaks. This study highlights that the resulting intricate variations of spectral albedo can be successfully explained by variations of the following snow surface variables: specific surface area (SSA) of snow, effective light-absorbing impurities content, presence of liquid water and slope. The methodology developed in this study disentangles the effect of these variables on snow spectral albedo. The presence of liquid water at the snow surface results in a spectral shift of the albedo from which melt events can be identified with an occurrence of false detection rate lower than 3.5 %. Snow SSA mostly impacts spectral albedo in the near-infrared range. Impurity deposition mostly impacts the albedo in the visible range but this impact is very dependent on snow SSA and surface slope. Our work thus demonstrates that the SSA estimation from spectral albedo is affected by large uncertainties for a tilted snow surface and medium to high impurity contents and that the estimation of impurity content is also affected by large uncertainties, especially for low values below 50 ng g−1 black carbon equivalent. The proposed methodology opens routes for retrieval of SSA, impurity content, melt events and surface slope from spectral albedo. However, an exhaustive accuracy assessment of the snow black properties retrieval would require more independent in situ measurements and is beyond the scope of the present study. This time series of snow spectral albedo nevertheless already provides a new insight into our understanding of the evolution of snow surface properties.</description><identifier>ISSN: 1994-0424</identifier><identifier>ISSN: 1994-0416</identifier><identifier>EISSN: 1994-0424</identifier><identifier>EISSN: 1994-0416</identifier><identifier>DOI: 10.5194/tc-11-1091-2017</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Absorption ; Albedo ; Albedo (solar) ; Alpine ecosystems ; Alpine environments ; Analytical methods ; Atmospheric particulates ; Black carbon ; Carbon ; Carbon equivalent ; Deposition ; Dust ; Dust deposition ; Dust storms ; Electromagnetic absorption ; Environmental aspects ; Equivalence ; Evolution ; I.R. radiation ; Ice ; Impurities ; In situ measurement ; Infrared spectra ; Infrared spectroscopy ; Light effects ; Metamorphism ; Methods ; Near infrared radiation ; Near infrared spectroscopy ; Observations ; Outbreaks ; Precipitation ; Retrieval ; Saharan dust ; Slopes ; Snow ; Snowpack ; Solar energy ; Spectral albedo ; Spectroscopy ; Spectrum analysis ; Surface area ; Surface properties ; Time series ; Uncertainty ; Water ; Water surface slope ; Winter</subject><ispartof>The cryosphere, 2017-05, Vol.11 (3), p.1091-1110</ispartof><rights>COPYRIGHT 2017 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-bdee2029c7459765d7e94244daddcf02511bfd558c515f06c34d13f6c7ff051f3</citedby><cites>FETCH-LOGICAL-c505t-bdee2029c7459765d7e94244daddcf02511bfd558c515f06c34d13f6c7ff051f3</cites><orcidid>0000-0002-1781-687X ; 0000-0002-4002-5873 ; 0000-0002-4432-4205 ; 0000-0003-1475-5853 ; 0000-0003-1317-7561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Dumont, Marie</creatorcontrib><creatorcontrib>Arnaud, Laurent</creatorcontrib><creatorcontrib>Picard, Ghislain</creatorcontrib><creatorcontrib>Libois, Quentin</creatorcontrib><creatorcontrib>Lejeune, Yves</creatorcontrib><creatorcontrib>Nabat, Pierre</creatorcontrib><creatorcontrib>Voisin, Didier</creatorcontrib><creatorcontrib>Morin, Samuel</creatorcontrib><title>In situ continuous visible and near-infrared spectroscopy of an alpine snowpack</title><title>The cryosphere</title><description>Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan dust deposition outbreaks. This study highlights that the resulting intricate variations of spectral albedo can be successfully explained by variations of the following snow surface variables: specific surface area (SSA) of snow, effective light-absorbing impurities content, presence of liquid water and slope. The methodology developed in this study disentangles the effect of these variables on snow spectral albedo. The presence of liquid water at the snow surface results in a spectral shift of the albedo from which melt events can be identified with an occurrence of false detection rate lower than 3.5 %. Snow SSA mostly impacts spectral albedo in the near-infrared range. Impurity deposition mostly impacts the albedo in the visible range but this impact is very dependent on snow SSA and surface slope. Our work thus demonstrates that the SSA estimation from spectral albedo is affected by large uncertainties for a tilted snow surface and medium to high impurity contents and that the estimation of impurity content is also affected by large uncertainties, especially for low values below 50 ng g−1 black carbon equivalent. The proposed methodology opens routes for retrieval of SSA, impurity content, melt events and surface slope from spectral albedo. However, an exhaustive accuracy assessment of the snow black properties retrieval would require more independent in situ measurements and is beyond the scope of the present study. This time series of snow spectral albedo nevertheless already provides a new insight into our understanding of the evolution of snow surface properties.</description><subject>Absorption</subject><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Alpine ecosystems</subject><subject>Alpine environments</subject><subject>Analytical methods</subject><subject>Atmospheric particulates</subject><subject>Black carbon</subject><subject>Carbon</subject><subject>Carbon equivalent</subject><subject>Deposition</subject><subject>Dust</subject><subject>Dust deposition</subject><subject>Dust storms</subject><subject>Electromagnetic absorption</subject><subject>Environmental aspects</subject><subject>Equivalence</subject><subject>Evolution</subject><subject>I.R. radiation</subject><subject>Ice</subject><subject>Impurities</subject><subject>In situ measurement</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Light effects</subject><subject>Metamorphism</subject><subject>Methods</subject><subject>Near infrared radiation</subject><subject>Near infrared spectroscopy</subject><subject>Observations</subject><subject>Outbreaks</subject><subject>Precipitation</subject><subject>Retrieval</subject><subject>Saharan dust</subject><subject>Slopes</subject><subject>Snow</subject><subject>Snowpack</subject><subject>Solar energy</subject><subject>Spectral albedo</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Surface area</subject><subject>Surface properties</subject><subject>Time series</subject><subject>Uncertainty</subject><subject>Water</subject><subject>Water surface slope</subject><subject>Winter</subject><issn>1994-0424</issn><issn>1994-0416</issn><issn>1994-0424</issn><issn>1994-0416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtLAzEUhQdRsD7WbgOuXEybO5PMNEsRH4WC4GMd0jxKapuMSUbtvzeDghZE7iKX8N3cnHOK4gzwmAIjkyRLgBIwg7LC0O4VI2CMlJhUZP9Xf1gcxbjCuKkYJqPifuZQtKlH0rtkXe_7iN5stIu1RsIp5LQIpXUmiKAVip2WKfgofbdF3mQCiXVnnUbR-fdOyJeT4sCIddSn3-dx8Xxz_XR1V87vb2dXl_NSUkxTuVBaV7hisiWUtQ1VrWb5c0QJpaTBFQVYGEXpVFKgBjeyJgpq08jWGEzB1MfF-de7XfCvvY6Jr3wfXF7JKwKEkJoR-I-CLL-lU9yQH2op1ppnsT4FITc2Sn5JGECLW4IzNf6DyqX0xmb3tLH5fmfgYmdgcFh_pKXoY-Szx4dddvLFyuxuDNrwLtiNCFsOmA_x8iQ5AB_i5UO89SeJGpT_</recordid><startdate>20170505</startdate><enddate>20170505</enddate><creator>Dumont, Marie</creator><creator>Arnaud, Laurent</creator><creator>Picard, Ghislain</creator><creator>Libois, Quentin</creator><creator>Lejeune, Yves</creator><creator>Nabat, Pierre</creator><creator>Voisin, Didier</creator><creator>Morin, Samuel</creator><general>Copernicus GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-1781-687X</orcidid><orcidid>https://orcid.org/0000-0002-4002-5873</orcidid><orcidid>https://orcid.org/0000-0002-4432-4205</orcidid><orcidid>https://orcid.org/0000-0003-1475-5853</orcidid><orcidid>https://orcid.org/0000-0003-1317-7561</orcidid></search><sort><creationdate>20170505</creationdate><title>In situ continuous visible and near-infrared spectroscopy of an alpine snowpack</title><author>Dumont, Marie ; Arnaud, Laurent ; Picard, Ghislain ; Libois, Quentin ; Lejeune, Yves ; Nabat, Pierre ; Voisin, Didier ; Morin, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-bdee2029c7459765d7e94244daddcf02511bfd558c515f06c34d13f6c7ff051f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Alpine ecosystems</topic><topic>Alpine environments</topic><topic>Analytical methods</topic><topic>Atmospheric particulates</topic><topic>Black carbon</topic><topic>Carbon</topic><topic>Carbon equivalent</topic><topic>Deposition</topic><topic>Dust</topic><topic>Dust deposition</topic><topic>Dust storms</topic><topic>Electromagnetic absorption</topic><topic>Environmental aspects</topic><topic>Equivalence</topic><topic>Evolution</topic><topic>I.R. radiation</topic><topic>Ice</topic><topic>Impurities</topic><topic>In situ measurement</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Light effects</topic><topic>Metamorphism</topic><topic>Methods</topic><topic>Near infrared radiation</topic><topic>Near infrared spectroscopy</topic><topic>Observations</topic><topic>Outbreaks</topic><topic>Precipitation</topic><topic>Retrieval</topic><topic>Saharan dust</topic><topic>Slopes</topic><topic>Snow</topic><topic>Snowpack</topic><topic>Solar energy</topic><topic>Spectral albedo</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Surface area</topic><topic>Surface properties</topic><topic>Time series</topic><topic>Uncertainty</topic><topic>Water</topic><topic>Water surface slope</topic><topic>Winter</topic><toplevel>online_resources</toplevel><creatorcontrib>Dumont, Marie</creatorcontrib><creatorcontrib>Arnaud, Laurent</creatorcontrib><creatorcontrib>Picard, Ghislain</creatorcontrib><creatorcontrib>Libois, Quentin</creatorcontrib><creatorcontrib>Lejeune, Yves</creatorcontrib><creatorcontrib>Nabat, Pierre</creatorcontrib><creatorcontrib>Voisin, Didier</creatorcontrib><creatorcontrib>Morin, Samuel</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>The cryosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumont, Marie</au><au>Arnaud, Laurent</au><au>Picard, Ghislain</au><au>Libois, Quentin</au><au>Lejeune, Yves</au><au>Nabat, Pierre</au><au>Voisin, Didier</au><au>Morin, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ continuous visible and near-infrared spectroscopy of an alpine snowpack</atitle><jtitle>The cryosphere</jtitle><date>2017-05-05</date><risdate>2017</risdate><volume>11</volume><issue>3</issue><spage>1091</spage><epage>1110</epage><pages>1091-1110</pages><issn>1994-0424</issn><issn>1994-0416</issn><eissn>1994-0424</eissn><eissn>1994-0416</eissn><abstract>Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan dust deposition outbreaks. This study highlights that the resulting intricate variations of spectral albedo can be successfully explained by variations of the following snow surface variables: specific surface area (SSA) of snow, effective light-absorbing impurities content, presence of liquid water and slope. The methodology developed in this study disentangles the effect of these variables on snow spectral albedo. The presence of liquid water at the snow surface results in a spectral shift of the albedo from which melt events can be identified with an occurrence of false detection rate lower than 3.5 %. Snow SSA mostly impacts spectral albedo in the near-infrared range. Impurity deposition mostly impacts the albedo in the visible range but this impact is very dependent on snow SSA and surface slope. Our work thus demonstrates that the SSA estimation from spectral albedo is affected by large uncertainties for a tilted snow surface and medium to high impurity contents and that the estimation of impurity content is also affected by large uncertainties, especially for low values below 50 ng g−1 black carbon equivalent. The proposed methodology opens routes for retrieval of SSA, impurity content, melt events and surface slope from spectral albedo. However, an exhaustive accuracy assessment of the snow black properties retrieval would require more independent in situ measurements and is beyond the scope of the present study. This time series of snow spectral albedo nevertheless already provides a new insight into our understanding of the evolution of snow surface properties.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/tc-11-1091-2017</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1781-687X</orcidid><orcidid>https://orcid.org/0000-0002-4002-5873</orcidid><orcidid>https://orcid.org/0000-0002-4432-4205</orcidid><orcidid>https://orcid.org/0000-0003-1475-5853</orcidid><orcidid>https://orcid.org/0000-0003-1317-7561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1994-0424 |
ispartof | The cryosphere, 2017-05, Vol.11 (3), p.1091-1110 |
issn | 1994-0424 1994-0416 1994-0424 1994-0416 |
language | eng |
recordid | cdi_proquest_journals_2414443941 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Absorption Albedo Albedo (solar) Alpine ecosystems Alpine environments Analytical methods Atmospheric particulates Black carbon Carbon Carbon equivalent Deposition Dust Dust deposition Dust storms Electromagnetic absorption Environmental aspects Equivalence Evolution I.R. radiation Ice Impurities In situ measurement Infrared spectra Infrared spectroscopy Light effects Metamorphism Methods Near infrared radiation Near infrared spectroscopy Observations Outbreaks Precipitation Retrieval Saharan dust Slopes Snow Snowpack Solar energy Spectral albedo Spectroscopy Spectrum analysis Surface area Surface properties Time series Uncertainty Water Water surface slope Winter |
title | In situ continuous visible and near-infrared spectroscopy of an alpine snowpack |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20continuous%20visible%20and%20near-infrared%20spectroscopy%20of%20an%20alpine%20snowpack&rft.jtitle=The%20cryosphere&rft.au=Dumont,%20Marie&rft.date=2017-05-05&rft.volume=11&rft.issue=3&rft.spage=1091&rft.epage=1110&rft.pages=1091-1110&rft.issn=1994-0424&rft.eissn=1994-0424&rft_id=info:doi/10.5194/tc-11-1091-2017&rft_dat=%3Cgale_proqu%3EA491170740%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904758064&rft_id=info:pmid/&rft_galeid=A491170740&rfr_iscdi=true |