Bioreactor cultivation condition for engineered bone tissue: Effect of various bioreactor designs on extra cellular matrix synthesis

Dynamic‐based systems are bio‐designed in order to mimic the micro‐environments of the bone tissue. There is limited direct comparison between perfusion and perfusion‐rotation forces in designing a bioreactor. Hence, in current study, we aimed to compare given bioreactors for bone regeneration. Two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2020-08, Vol.108 (8), p.1662-1672
Hauptverfasser: Nokhbatolfoghahaei, Hanieh, Bohlouli, Mahboubeh, Paknejad, Zahrasadat, R. Rad, Maryam, M. Amirabad, Leila, Salehi‐Nik, Nasim, Khani, Mohammad M., Shahriari, Shayan, Nadjmi, Nasser, Ebrahimpour, Adel, Khojasteh, Arash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1672
container_issue 8
container_start_page 1662
container_title Journal of biomedical materials research. Part A
container_volume 108
creator Nokhbatolfoghahaei, Hanieh
Bohlouli, Mahboubeh
Paknejad, Zahrasadat
R. Rad, Maryam
M. Amirabad, Leila
Salehi‐Nik, Nasim
Khani, Mohammad M.
Shahriari, Shayan
Nadjmi, Nasser
Ebrahimpour, Adel
Khojasteh, Arash
description Dynamic‐based systems are bio‐designed in order to mimic the micro‐environments of the bone tissue. There is limited direct comparison between perfusion and perfusion‐rotation forces in designing a bioreactor. Hence, in current study, we aimed to compare given bioreactors for bone regeneration. Two types of bioreactors including rotating & perfusion and perfusion bioreactors were designed. Mesenchymal stem cells derived from buccal fat pad were loaded on a gelatin/β‐Tricalcium phosphate scaffold. Cell‐scaffold constructs were subjected to different treatment condition and place in either of the bioreactors. Effect of different dynamic conditions on cellular behavior including cell proliferation, cell adhesion, and osteogenic differentiation were assessed. Osteogenic assessment of scaffolds after 24 days revealed that rotating & perfusion bioreactor led to significantly higher expression of OCN and RUNX2 genes and also greater amount of ALP and collagen I protein production compared to static groups and perfusion bioreactor. Observation of cellular sheets which filled the scaffold porosities in SEM images, approved the better cell responses to rotating & perfusion forces of the bioreactor. The outcomes demonstrated that rotating & perfusion bioreactor action on bone regeneration is much preferable than perfusion bioreactor. Therefore, it seems that exertion of multi‐stimuli is more effective for bone engineering.
doi_str_mv 10.1002/jbm.a.36932
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2414440317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379021427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4342-9fa63bd1e939a35e1337ea6e57798e655e0f780f9f546115df31581de1845f0c3</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhkOp1I921X0JdCPI3OZzZtKditqKpRtdh8zMic1lJtEko969P9xcr63Qhavzwnl4eOFF6DMlC0oI-7bspoVZ8Fpx9g7tUClZJVQt36-zUBVnqt5GuyktC1wTyT6gbc6ooryVO-jxyIUIps8h4n4es7sz2QWP--AH95xs-YC_dh4gwoC74AFnl9IM3_GJtdBnHCy-M9GFOeHuVTdActc-4eKAhxwN7mEc59FEPJkc3QNOK5__FCh9RFvWjAk-vdw9dHV6cnn8o7r4ffbz-PCi6gUXrFLW1LwbKCiuDJdAOW_A1CCbRrVQSwnENi2xykpRUyoHy6ls6QC0FdKSnu-h_Y33JobbGVLWk0vrVsZDKa8ZbxRhVLCmoF__Q5dhjr6000xQIQThdE0dbKg-hpQiWH0T3WTiSlOi1-PoMo42-nmcQn95cc7dBMM_9u8aBWAb4N6NsHrLpc-Pfh1urE-Cq5wH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414440317</pqid></control><display><type>article</type><title>Bioreactor cultivation condition for engineered bone tissue: Effect of various bioreactor designs on extra cellular matrix synthesis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nokhbatolfoghahaei, Hanieh ; Bohlouli, Mahboubeh ; Paknejad, Zahrasadat ; R. Rad, Maryam ; M. Amirabad, Leila ; Salehi‐Nik, Nasim ; Khani, Mohammad M. ; Shahriari, Shayan ; Nadjmi, Nasser ; Ebrahimpour, Adel ; Khojasteh, Arash</creator><creatorcontrib>Nokhbatolfoghahaei, Hanieh ; Bohlouli, Mahboubeh ; Paknejad, Zahrasadat ; R. Rad, Maryam ; M. Amirabad, Leila ; Salehi‐Nik, Nasim ; Khani, Mohammad M. ; Shahriari, Shayan ; Nadjmi, Nasser ; Ebrahimpour, Adel ; Khojasteh, Arash</creatorcontrib><description>Dynamic‐based systems are bio‐designed in order to mimic the micro‐environments of the bone tissue. There is limited direct comparison between perfusion and perfusion‐rotation forces in designing a bioreactor. Hence, in current study, we aimed to compare given bioreactors for bone regeneration. Two types of bioreactors including rotating &amp; perfusion and perfusion bioreactors were designed. Mesenchymal stem cells derived from buccal fat pad were loaded on a gelatin/β‐Tricalcium phosphate scaffold. Cell‐scaffold constructs were subjected to different treatment condition and place in either of the bioreactors. Effect of different dynamic conditions on cellular behavior including cell proliferation, cell adhesion, and osteogenic differentiation were assessed. Osteogenic assessment of scaffolds after 24 days revealed that rotating &amp; perfusion bioreactor led to significantly higher expression of OCN and RUNX2 genes and also greater amount of ALP and collagen I protein production compared to static groups and perfusion bioreactor. Observation of cellular sheets which filled the scaffold porosities in SEM images, approved the better cell responses to rotating &amp; perfusion forces of the bioreactor. The outcomes demonstrated that rotating &amp; perfusion bioreactor action on bone regeneration is much preferable than perfusion bioreactor. Therefore, it seems that exertion of multi‐stimuli is more effective for bone engineering.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36932</identifier><identifier>PMID: 32191385</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Biomedical materials ; Bioreactors ; Bone growth ; bone regeneration ; Bones ; buccal fat pad‐derived stem cells ; Calcium phosphates ; Cbfa-1 protein ; Cell adhesion ; Cell adhesion &amp; migration ; Cell differentiation ; Cell proliferation ; Collagen (type I) ; Cultivation ; Differentiation (biology) ; Gelatin ; Mesenchyme ; Perfusion ; perfusion &amp; rotating bioreactor ; perfusion bioreactors ; Regeneration ; Regeneration (physiology) ; Rotation ; Scaffolds ; Stem cells ; Tricalcium phosphate ; β‐TCP</subject><ispartof>Journal of biomedical materials research. Part A, 2020-08, Vol.108 (8), p.1662-1672</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4342-9fa63bd1e939a35e1337ea6e57798e655e0f780f9f546115df31581de1845f0c3</citedby><cites>FETCH-LOGICAL-c4342-9fa63bd1e939a35e1337ea6e57798e655e0f780f9f546115df31581de1845f0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36932$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36932$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32191385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nokhbatolfoghahaei, Hanieh</creatorcontrib><creatorcontrib>Bohlouli, Mahboubeh</creatorcontrib><creatorcontrib>Paknejad, Zahrasadat</creatorcontrib><creatorcontrib>R. Rad, Maryam</creatorcontrib><creatorcontrib>M. Amirabad, Leila</creatorcontrib><creatorcontrib>Salehi‐Nik, Nasim</creatorcontrib><creatorcontrib>Khani, Mohammad M.</creatorcontrib><creatorcontrib>Shahriari, Shayan</creatorcontrib><creatorcontrib>Nadjmi, Nasser</creatorcontrib><creatorcontrib>Ebrahimpour, Adel</creatorcontrib><creatorcontrib>Khojasteh, Arash</creatorcontrib><title>Bioreactor cultivation condition for engineered bone tissue: Effect of various bioreactor designs on extra cellular matrix synthesis</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Dynamic‐based systems are bio‐designed in order to mimic the micro‐environments of the bone tissue. There is limited direct comparison between perfusion and perfusion‐rotation forces in designing a bioreactor. Hence, in current study, we aimed to compare given bioreactors for bone regeneration. Two types of bioreactors including rotating &amp; perfusion and perfusion bioreactors were designed. Mesenchymal stem cells derived from buccal fat pad were loaded on a gelatin/β‐Tricalcium phosphate scaffold. Cell‐scaffold constructs were subjected to different treatment condition and place in either of the bioreactors. Effect of different dynamic conditions on cellular behavior including cell proliferation, cell adhesion, and osteogenic differentiation were assessed. Osteogenic assessment of scaffolds after 24 days revealed that rotating &amp; perfusion bioreactor led to significantly higher expression of OCN and RUNX2 genes and also greater amount of ALP and collagen I protein production compared to static groups and perfusion bioreactor. Observation of cellular sheets which filled the scaffold porosities in SEM images, approved the better cell responses to rotating &amp; perfusion forces of the bioreactor. The outcomes demonstrated that rotating &amp; perfusion bioreactor action on bone regeneration is much preferable than perfusion bioreactor. Therefore, it seems that exertion of multi‐stimuli is more effective for bone engineering.</description><subject>Biomedical materials</subject><subject>Bioreactors</subject><subject>Bone growth</subject><subject>bone regeneration</subject><subject>Bones</subject><subject>buccal fat pad‐derived stem cells</subject><subject>Calcium phosphates</subject><subject>Cbfa-1 protein</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell differentiation</subject><subject>Cell proliferation</subject><subject>Collagen (type I)</subject><subject>Cultivation</subject><subject>Differentiation (biology)</subject><subject>Gelatin</subject><subject>Mesenchyme</subject><subject>Perfusion</subject><subject>perfusion &amp; rotating bioreactor</subject><subject>perfusion bioreactors</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Rotation</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Tricalcium phosphate</subject><subject>β‐TCP</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LHTEUhkOp1I921X0JdCPI3OZzZtKditqKpRtdh8zMic1lJtEko969P9xcr63Qhavzwnl4eOFF6DMlC0oI-7bspoVZ8Fpx9g7tUClZJVQt36-zUBVnqt5GuyktC1wTyT6gbc6ooryVO-jxyIUIps8h4n4es7sz2QWP--AH95xs-YC_dh4gwoC74AFnl9IM3_GJtdBnHCy-M9GFOeHuVTdActc-4eKAhxwN7mEc59FEPJkc3QNOK5__FCh9RFvWjAk-vdw9dHV6cnn8o7r4ffbz-PCi6gUXrFLW1LwbKCiuDJdAOW_A1CCbRrVQSwnENi2xykpRUyoHy6ls6QC0FdKSnu-h_Y33JobbGVLWk0vrVsZDKa8ZbxRhVLCmoF__Q5dhjr6000xQIQThdE0dbKg-hpQiWH0T3WTiSlOi1-PoMo42-nmcQn95cc7dBMM_9u8aBWAb4N6NsHrLpc-Pfh1urE-Cq5wH</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Nokhbatolfoghahaei, Hanieh</creator><creator>Bohlouli, Mahboubeh</creator><creator>Paknejad, Zahrasadat</creator><creator>R. Rad, Maryam</creator><creator>M. Amirabad, Leila</creator><creator>Salehi‐Nik, Nasim</creator><creator>Khani, Mohammad M.</creator><creator>Shahriari, Shayan</creator><creator>Nadjmi, Nasser</creator><creator>Ebrahimpour, Adel</creator><creator>Khojasteh, Arash</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20200801</creationdate><title>Bioreactor cultivation condition for engineered bone tissue: Effect of various bioreactor designs on extra cellular matrix synthesis</title><author>Nokhbatolfoghahaei, Hanieh ; Bohlouli, Mahboubeh ; Paknejad, Zahrasadat ; R. Rad, Maryam ; M. Amirabad, Leila ; Salehi‐Nik, Nasim ; Khani, Mohammad M. ; Shahriari, Shayan ; Nadjmi, Nasser ; Ebrahimpour, Adel ; Khojasteh, Arash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4342-9fa63bd1e939a35e1337ea6e57798e655e0f780f9f546115df31581de1845f0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical materials</topic><topic>Bioreactors</topic><topic>Bone growth</topic><topic>bone regeneration</topic><topic>Bones</topic><topic>buccal fat pad‐derived stem cells</topic><topic>Calcium phosphates</topic><topic>Cbfa-1 protein</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell differentiation</topic><topic>Cell proliferation</topic><topic>Collagen (type I)</topic><topic>Cultivation</topic><topic>Differentiation (biology)</topic><topic>Gelatin</topic><topic>Mesenchyme</topic><topic>Perfusion</topic><topic>perfusion &amp; rotating bioreactor</topic><topic>perfusion bioreactors</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Rotation</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Tricalcium phosphate</topic><topic>β‐TCP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nokhbatolfoghahaei, Hanieh</creatorcontrib><creatorcontrib>Bohlouli, Mahboubeh</creatorcontrib><creatorcontrib>Paknejad, Zahrasadat</creatorcontrib><creatorcontrib>R. Rad, Maryam</creatorcontrib><creatorcontrib>M. Amirabad, Leila</creatorcontrib><creatorcontrib>Salehi‐Nik, Nasim</creatorcontrib><creatorcontrib>Khani, Mohammad M.</creatorcontrib><creatorcontrib>Shahriari, Shayan</creatorcontrib><creatorcontrib>Nadjmi, Nasser</creatorcontrib><creatorcontrib>Ebrahimpour, Adel</creatorcontrib><creatorcontrib>Khojasteh, Arash</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nokhbatolfoghahaei, Hanieh</au><au>Bohlouli, Mahboubeh</au><au>Paknejad, Zahrasadat</au><au>R. Rad, Maryam</au><au>M. Amirabad, Leila</au><au>Salehi‐Nik, Nasim</au><au>Khani, Mohammad M.</au><au>Shahriari, Shayan</au><au>Nadjmi, Nasser</au><au>Ebrahimpour, Adel</au><au>Khojasteh, Arash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioreactor cultivation condition for engineered bone tissue: Effect of various bioreactor designs on extra cellular matrix synthesis</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>108</volume><issue>8</issue><spage>1662</spage><epage>1672</epage><pages>1662-1672</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Dynamic‐based systems are bio‐designed in order to mimic the micro‐environments of the bone tissue. There is limited direct comparison between perfusion and perfusion‐rotation forces in designing a bioreactor. Hence, in current study, we aimed to compare given bioreactors for bone regeneration. Two types of bioreactors including rotating &amp; perfusion and perfusion bioreactors were designed. Mesenchymal stem cells derived from buccal fat pad were loaded on a gelatin/β‐Tricalcium phosphate scaffold. Cell‐scaffold constructs were subjected to different treatment condition and place in either of the bioreactors. Effect of different dynamic conditions on cellular behavior including cell proliferation, cell adhesion, and osteogenic differentiation were assessed. Osteogenic assessment of scaffolds after 24 days revealed that rotating &amp; perfusion bioreactor led to significantly higher expression of OCN and RUNX2 genes and also greater amount of ALP and collagen I protein production compared to static groups and perfusion bioreactor. Observation of cellular sheets which filled the scaffold porosities in SEM images, approved the better cell responses to rotating &amp; perfusion forces of the bioreactor. The outcomes demonstrated that rotating &amp; perfusion bioreactor action on bone regeneration is much preferable than perfusion bioreactor. Therefore, it seems that exertion of multi‐stimuli is more effective for bone engineering.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32191385</pmid><doi>10.1002/jbm.a.36932</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2020-08, Vol.108 (8), p.1662-1672
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_journals_2414440317
source Wiley Online Library Journals Frontfile Complete
subjects Biomedical materials
Bioreactors
Bone growth
bone regeneration
Bones
buccal fat pad‐derived stem cells
Calcium phosphates
Cbfa-1 protein
Cell adhesion
Cell adhesion & migration
Cell differentiation
Cell proliferation
Collagen (type I)
Cultivation
Differentiation (biology)
Gelatin
Mesenchyme
Perfusion
perfusion & rotating bioreactor
perfusion bioreactors
Regeneration
Regeneration (physiology)
Rotation
Scaffolds
Stem cells
Tricalcium phosphate
β‐TCP
title Bioreactor cultivation condition for engineered bone tissue: Effect of various bioreactor designs on extra cellular matrix synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioreactor%20cultivation%20condition%20for%20engineered%20bone%20tissue:%20Effect%20of%20various%20bioreactor%20designs%20on%20extra%20cellular%20matrix%20synthesis&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Nokhbatolfoghahaei,%20Hanieh&rft.date=2020-08-01&rft.volume=108&rft.issue=8&rft.spage=1662&rft.epage=1672&rft.pages=1662-1672&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36932&rft_dat=%3Cproquest_cross%3E2379021427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414440317&rft_id=info:pmid/32191385&rfr_iscdi=true