Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition

Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-06, Vol.217 (12), p.n/a
Hauptverfasser: Kwak, Taemyung, Lee, Jonggun, Yoo, Geunho, Shin, Heejin, Choi, Uiho, So, Byeongchan, Kim, Seongwoo, Nam, Okhyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 217
creator Kwak, Taemyung
Lee, Jonggun
Yoo, Geunho
Shin, Heejin
Choi, Uiho
So, Byeongchan
Kim, Seongwoo
Nam, Okhyun
description Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat surface morphology of the substrate, the MPCVD‐grown boron‐doped diamond layer exhibit excellent surface properties and crystallinity, as measured by X‐ray diffraction and atomic force microscopy. The temperature‐dependent Hall effect measurements are conducted at temperature ranges between 300–800 K with cloverleaf‐shaped van der Pauw geometry. The hole concentration of boron‐doped diamond samples is between 1.1 × 1015 and 5 × 1019 cm−3 at room temperature, and the resistivity is controlled between 10−1 and 20 Ω cm by changing boron to carbon ratio. A specific contact resistance as low as 1.41 × 10−4 Ω cm2 is obtained via annealing at 500 °C. The activation energy of the boron‐doped diamond layers is reduced from 0.35 to 0.12 eV as the amount of boron dopant increases, which is attributed to the formation of impurity band. Finally, the change in the carrier mobility of boron‐doped heteroepitaxial diamond is discussed based on the scattering mechanism. Herein, it is demonstrated that boron‐doped diamond layer is grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material.
doi_str_mv 10.1002/pssa.201900973
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2414431128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414431128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-7e2ccc761b70e115552e54500e5f794ede3896102317d01cee6a0c8ad0c28ef3</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQh4MoqNWr5wXPqbOb_8eaaitULKR6DdvNxG5JsnE3tfYm-AI-o0_ilkr15mlm4Ptmhp_jXFDoUwB21RrD-wxoApBE3oFzQuOQuaFHk8N9D3DsnBqzBPADP6Inzse10qr5ev8cqhYLksnmuUI7pnpjOl6RoeS1agoy0mrdLYhqyBg71Apb2fE3-YfIVnPTad4heTR2C7mXwjr8Fcm04qbmJF1gLYU1nnirNBliq4zspGrOnKOSVwbPf2rPmd3ezNKxO3kY3aWDiSs8GnluhEwIEYV0HgFSGgQBw8APADAoo8THAr04CSkwSxdABWLIQcS8AMFiLL2ec7lb22r1skLT5Uu10o29mDOf-r5HKYst1d9R9ntjNJZ5q2XN9SankG9zzrc55_ucrZDshLWscPMPnU-zbPDrfgOvhIW_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414431128</pqid></control><display><type>article</type><title>Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition</title><source>Wiley Online Library All Journals</source><creator>Kwak, Taemyung ; Lee, Jonggun ; Yoo, Geunho ; Shin, Heejin ; Choi, Uiho ; So, Byeongchan ; Kim, Seongwoo ; Nam, Okhyun</creator><creatorcontrib>Kwak, Taemyung ; Lee, Jonggun ; Yoo, Geunho ; Shin, Heejin ; Choi, Uiho ; So, Byeongchan ; Kim, Seongwoo ; Nam, Okhyun</creatorcontrib><description>Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat surface morphology of the substrate, the MPCVD‐grown boron‐doped diamond layer exhibit excellent surface properties and crystallinity, as measured by X‐ray diffraction and atomic force microscopy. The temperature‐dependent Hall effect measurements are conducted at temperature ranges between 300–800 K with cloverleaf‐shaped van der Pauw geometry. The hole concentration of boron‐doped diamond samples is between 1.1 × 1015 and 5 × 1019 cm−3 at room temperature, and the resistivity is controlled between 10−1 and 20 Ω cm by changing boron to carbon ratio. A specific contact resistance as low as 1.41 × 10−4 Ω cm2 is obtained via annealing at 500 °C. The activation energy of the boron‐doped diamond layers is reduced from 0.35 to 0.12 eV as the amount of boron dopant increases, which is attributed to the formation of impurity band. Finally, the change in the carrier mobility of boron‐doped heteroepitaxial diamond is discussed based on the scattering mechanism. Herein, it is demonstrated that boron‐doped diamond layer is grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900973</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Boron ; boron doping ; Carrier mobility ; Chemical vapor deposition ; Contact resistance ; Crystal growth ; Crystal structure ; Crystallinity ; diamond ; Diamonds ; electrical properties ; Flat surfaces ; Hall effect ; heteroepitaxy ; Microwave plasmas ; Room temperature ; Semiconductor materials ; Substrates ; Surface properties ; Temperature dependence</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-06, Vol.217 (12), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-7e2ccc761b70e115552e54500e5f794ede3896102317d01cee6a0c8ad0c28ef3</citedby><cites>FETCH-LOGICAL-c3173-7e2ccc761b70e115552e54500e5f794ede3896102317d01cee6a0c8ad0c28ef3</cites><orcidid>0000-0002-9257-0558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900973$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900973$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kwak, Taemyung</creatorcontrib><creatorcontrib>Lee, Jonggun</creatorcontrib><creatorcontrib>Yoo, Geunho</creatorcontrib><creatorcontrib>Shin, Heejin</creatorcontrib><creatorcontrib>Choi, Uiho</creatorcontrib><creatorcontrib>So, Byeongchan</creatorcontrib><creatorcontrib>Kim, Seongwoo</creatorcontrib><creatorcontrib>Nam, Okhyun</creatorcontrib><title>Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition</title><title>Physica status solidi. A, Applications and materials science</title><description>Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat surface morphology of the substrate, the MPCVD‐grown boron‐doped diamond layer exhibit excellent surface properties and crystallinity, as measured by X‐ray diffraction and atomic force microscopy. The temperature‐dependent Hall effect measurements are conducted at temperature ranges between 300–800 K with cloverleaf‐shaped van der Pauw geometry. The hole concentration of boron‐doped diamond samples is between 1.1 × 1015 and 5 × 1019 cm−3 at room temperature, and the resistivity is controlled between 10−1 and 20 Ω cm by changing boron to carbon ratio. A specific contact resistance as low as 1.41 × 10−4 Ω cm2 is obtained via annealing at 500 °C. The activation energy of the boron‐doped diamond layers is reduced from 0.35 to 0.12 eV as the amount of boron dopant increases, which is attributed to the formation of impurity band. Finally, the change in the carrier mobility of boron‐doped heteroepitaxial diamond is discussed based on the scattering mechanism. Herein, it is demonstrated that boron‐doped diamond layer is grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material.</description><subject>Atomic force microscopy</subject><subject>Boron</subject><subject>boron doping</subject><subject>Carrier mobility</subject><subject>Chemical vapor deposition</subject><subject>Contact resistance</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>diamond</subject><subject>Diamonds</subject><subject>electrical properties</subject><subject>Flat surfaces</subject><subject>Hall effect</subject><subject>heteroepitaxy</subject><subject>Microwave plasmas</subject><subject>Room temperature</subject><subject>Semiconductor materials</subject><subject>Substrates</subject><subject>Surface properties</subject><subject>Temperature dependence</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQh4MoqNWr5wXPqbOb_8eaaitULKR6DdvNxG5JsnE3tfYm-AI-o0_ilkr15mlm4Ptmhp_jXFDoUwB21RrD-wxoApBE3oFzQuOQuaFHk8N9D3DsnBqzBPADP6Inzse10qr5ev8cqhYLksnmuUI7pnpjOl6RoeS1agoy0mrdLYhqyBg71Apb2fE3-YfIVnPTad4heTR2C7mXwjr8Fcm04qbmJF1gLYU1nnirNBliq4zspGrOnKOSVwbPf2rPmd3ezNKxO3kY3aWDiSs8GnluhEwIEYV0HgFSGgQBw8APADAoo8THAr04CSkwSxdABWLIQcS8AMFiLL2ec7lb22r1skLT5Uu10o29mDOf-r5HKYst1d9R9ntjNJZ5q2XN9SankG9zzrc55_ucrZDshLWscPMPnU-zbPDrfgOvhIW_</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Kwak, Taemyung</creator><creator>Lee, Jonggun</creator><creator>Yoo, Geunho</creator><creator>Shin, Heejin</creator><creator>Choi, Uiho</creator><creator>So, Byeongchan</creator><creator>Kim, Seongwoo</creator><creator>Nam, Okhyun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9257-0558</orcidid></search><sort><creationdate>202006</creationdate><title>Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition</title><author>Kwak, Taemyung ; Lee, Jonggun ; Yoo, Geunho ; Shin, Heejin ; Choi, Uiho ; So, Byeongchan ; Kim, Seongwoo ; Nam, Okhyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-7e2ccc761b70e115552e54500e5f794ede3896102317d01cee6a0c8ad0c28ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic force microscopy</topic><topic>Boron</topic><topic>boron doping</topic><topic>Carrier mobility</topic><topic>Chemical vapor deposition</topic><topic>Contact resistance</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>diamond</topic><topic>Diamonds</topic><topic>electrical properties</topic><topic>Flat surfaces</topic><topic>Hall effect</topic><topic>heteroepitaxy</topic><topic>Microwave plasmas</topic><topic>Room temperature</topic><topic>Semiconductor materials</topic><topic>Substrates</topic><topic>Surface properties</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwak, Taemyung</creatorcontrib><creatorcontrib>Lee, Jonggun</creatorcontrib><creatorcontrib>Yoo, Geunho</creatorcontrib><creatorcontrib>Shin, Heejin</creatorcontrib><creatorcontrib>Choi, Uiho</creatorcontrib><creatorcontrib>So, Byeongchan</creatorcontrib><creatorcontrib>Kim, Seongwoo</creatorcontrib><creatorcontrib>Nam, Okhyun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwak, Taemyung</au><au>Lee, Jonggun</au><au>Yoo, Geunho</au><au>Shin, Heejin</au><au>Choi, Uiho</au><au>So, Byeongchan</au><au>Kim, Seongwoo</au><au>Nam, Okhyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-06</date><risdate>2020</risdate><volume>217</volume><issue>12</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat surface morphology of the substrate, the MPCVD‐grown boron‐doped diamond layer exhibit excellent surface properties and crystallinity, as measured by X‐ray diffraction and atomic force microscopy. The temperature‐dependent Hall effect measurements are conducted at temperature ranges between 300–800 K with cloverleaf‐shaped van der Pauw geometry. The hole concentration of boron‐doped diamond samples is between 1.1 × 1015 and 5 × 1019 cm−3 at room temperature, and the resistivity is controlled between 10−1 and 20 Ω cm by changing boron to carbon ratio. A specific contact resistance as low as 1.41 × 10−4 Ω cm2 is obtained via annealing at 500 °C. The activation energy of the boron‐doped diamond layers is reduced from 0.35 to 0.12 eV as the amount of boron dopant increases, which is attributed to the formation of impurity band. Finally, the change in the carrier mobility of boron‐doped heteroepitaxial diamond is discussed based on the scattering mechanism. Herein, it is demonstrated that boron‐doped diamond layer is grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900973</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9257-0558</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2020-06, Vol.217 (12), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2414431128
source Wiley Online Library All Journals
subjects Atomic force microscopy
Boron
boron doping
Carrier mobility
Chemical vapor deposition
Contact resistance
Crystal growth
Crystal structure
Crystallinity
diamond
Diamonds
electrical properties
Flat surfaces
Hall effect
heteroepitaxy
Microwave plasmas
Room temperature
Semiconductor materials
Substrates
Surface properties
Temperature dependence
title Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%E2%80%90Doped%20Single%E2%80%90Crystal%20Diamond%20Growth%20on%20Heteroepitaxial%20Diamond%20Substrate%20Using%20Microwave%20Plasma%20Chemical%20Vapor%20Deposition&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Kwak,%20Taemyung&rft.date=2020-06&rft.volume=217&rft.issue=12&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900973&rft_dat=%3Cproquest_cross%3E2414431128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414431128&rft_id=info:pmid/&rfr_iscdi=true