Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition
Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat su...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2020-06, Vol.217 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 217 |
creator | Kwak, Taemyung Lee, Jonggun Yoo, Geunho Shin, Heejin Choi, Uiho So, Byeongchan Kim, Seongwoo Nam, Okhyun |
description | Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat surface morphology of the substrate, the MPCVD‐grown boron‐doped diamond layer exhibit excellent surface properties and crystallinity, as measured by X‐ray diffraction and atomic force microscopy. The temperature‐dependent Hall effect measurements are conducted at temperature ranges between 300–800 K with cloverleaf‐shaped van der Pauw geometry. The hole concentration of boron‐doped diamond samples is between 1.1 × 1015 and 5 × 1019 cm−3 at room temperature, and the resistivity is controlled between 10−1 and 20 Ω cm by changing boron to carbon ratio. A specific contact resistance as low as 1.41 × 10−4 Ω cm2 is obtained via annealing at 500 °C. The activation energy of the boron‐doped diamond layers is reduced from 0.35 to 0.12 eV as the amount of boron dopant increases, which is attributed to the formation of impurity band. Finally, the change in the carrier mobility of boron‐doped heteroepitaxial diamond is discussed based on the scattering mechanism.
Herein, it is demonstrated that boron‐doped diamond layer is grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. |
doi_str_mv | 10.1002/pssa.201900973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2414431128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414431128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-7e2ccc761b70e115552e54500e5f794ede3896102317d01cee6a0c8ad0c28ef3</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQh4MoqNWr5wXPqbOb_8eaaitULKR6DdvNxG5JsnE3tfYm-AI-o0_ilkr15mlm4Ptmhp_jXFDoUwB21RrD-wxoApBE3oFzQuOQuaFHk8N9D3DsnBqzBPADP6Inzse10qr5ev8cqhYLksnmuUI7pnpjOl6RoeS1agoy0mrdLYhqyBg71Apb2fE3-YfIVnPTad4heTR2C7mXwjr8Fcm04qbmJF1gLYU1nnirNBliq4zspGrOnKOSVwbPf2rPmd3ezNKxO3kY3aWDiSs8GnluhEwIEYV0HgFSGgQBw8APADAoo8THAr04CSkwSxdABWLIQcS8AMFiLL2ec7lb22r1skLT5Uu10o29mDOf-r5HKYst1d9R9ntjNJZ5q2XN9SankG9zzrc55_ucrZDshLWscPMPnU-zbPDrfgOvhIW_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414431128</pqid></control><display><type>article</type><title>Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition</title><source>Wiley Online Library All Journals</source><creator>Kwak, Taemyung ; Lee, Jonggun ; Yoo, Geunho ; Shin, Heejin ; Choi, Uiho ; So, Byeongchan ; Kim, Seongwoo ; Nam, Okhyun</creator><creatorcontrib>Kwak, Taemyung ; Lee, Jonggun ; Yoo, Geunho ; Shin, Heejin ; Choi, Uiho ; So, Byeongchan ; Kim, Seongwoo ; Nam, Okhyun</creatorcontrib><description>Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat surface morphology of the substrate, the MPCVD‐grown boron‐doped diamond layer exhibit excellent surface properties and crystallinity, as measured by X‐ray diffraction and atomic force microscopy. The temperature‐dependent Hall effect measurements are conducted at temperature ranges between 300–800 K with cloverleaf‐shaped van der Pauw geometry. The hole concentration of boron‐doped diamond samples is between 1.1 × 1015 and 5 × 1019 cm−3 at room temperature, and the resistivity is controlled between 10−1 and 20 Ω cm by changing boron to carbon ratio. A specific contact resistance as low as 1.41 × 10−4 Ω cm2 is obtained via annealing at 500 °C. The activation energy of the boron‐doped diamond layers is reduced from 0.35 to 0.12 eV as the amount of boron dopant increases, which is attributed to the formation of impurity band. Finally, the change in the carrier mobility of boron‐doped heteroepitaxial diamond is discussed based on the scattering mechanism.
Herein, it is demonstrated that boron‐doped diamond layer is grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900973</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Boron ; boron doping ; Carrier mobility ; Chemical vapor deposition ; Contact resistance ; Crystal growth ; Crystal structure ; Crystallinity ; diamond ; Diamonds ; electrical properties ; Flat surfaces ; Hall effect ; heteroepitaxy ; Microwave plasmas ; Room temperature ; Semiconductor materials ; Substrates ; Surface properties ; Temperature dependence</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-06, Vol.217 (12), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-7e2ccc761b70e115552e54500e5f794ede3896102317d01cee6a0c8ad0c28ef3</citedby><cites>FETCH-LOGICAL-c3173-7e2ccc761b70e115552e54500e5f794ede3896102317d01cee6a0c8ad0c28ef3</cites><orcidid>0000-0002-9257-0558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900973$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900973$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kwak, Taemyung</creatorcontrib><creatorcontrib>Lee, Jonggun</creatorcontrib><creatorcontrib>Yoo, Geunho</creatorcontrib><creatorcontrib>Shin, Heejin</creatorcontrib><creatorcontrib>Choi, Uiho</creatorcontrib><creatorcontrib>So, Byeongchan</creatorcontrib><creatorcontrib>Kim, Seongwoo</creatorcontrib><creatorcontrib>Nam, Okhyun</creatorcontrib><title>Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition</title><title>Physica status solidi. A, Applications and materials science</title><description>Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat surface morphology of the substrate, the MPCVD‐grown boron‐doped diamond layer exhibit excellent surface properties and crystallinity, as measured by X‐ray diffraction and atomic force microscopy. The temperature‐dependent Hall effect measurements are conducted at temperature ranges between 300–800 K with cloverleaf‐shaped van der Pauw geometry. The hole concentration of boron‐doped diamond samples is between 1.1 × 1015 and 5 × 1019 cm−3 at room temperature, and the resistivity is controlled between 10−1 and 20 Ω cm by changing boron to carbon ratio. A specific contact resistance as low as 1.41 × 10−4 Ω cm2 is obtained via annealing at 500 °C. The activation energy of the boron‐doped diamond layers is reduced from 0.35 to 0.12 eV as the amount of boron dopant increases, which is attributed to the formation of impurity band. Finally, the change in the carrier mobility of boron‐doped heteroepitaxial diamond is discussed based on the scattering mechanism.
Herein, it is demonstrated that boron‐doped diamond layer is grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material.</description><subject>Atomic force microscopy</subject><subject>Boron</subject><subject>boron doping</subject><subject>Carrier mobility</subject><subject>Chemical vapor deposition</subject><subject>Contact resistance</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>diamond</subject><subject>Diamonds</subject><subject>electrical properties</subject><subject>Flat surfaces</subject><subject>Hall effect</subject><subject>heteroepitaxy</subject><subject>Microwave plasmas</subject><subject>Room temperature</subject><subject>Semiconductor materials</subject><subject>Substrates</subject><subject>Surface properties</subject><subject>Temperature dependence</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQh4MoqNWr5wXPqbOb_8eaaitULKR6DdvNxG5JsnE3tfYm-AI-o0_ilkr15mlm4Ptmhp_jXFDoUwB21RrD-wxoApBE3oFzQuOQuaFHk8N9D3DsnBqzBPADP6Inzse10qr5ev8cqhYLksnmuUI7pnpjOl6RoeS1agoy0mrdLYhqyBg71Apb2fE3-YfIVnPTad4heTR2C7mXwjr8Fcm04qbmJF1gLYU1nnirNBliq4zspGrOnKOSVwbPf2rPmd3ezNKxO3kY3aWDiSs8GnluhEwIEYV0HgFSGgQBw8APADAoo8THAr04CSkwSxdABWLIQcS8AMFiLL2ec7lb22r1skLT5Uu10o29mDOf-r5HKYst1d9R9ntjNJZ5q2XN9SankG9zzrc55_ucrZDshLWscPMPnU-zbPDrfgOvhIW_</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Kwak, Taemyung</creator><creator>Lee, Jonggun</creator><creator>Yoo, Geunho</creator><creator>Shin, Heejin</creator><creator>Choi, Uiho</creator><creator>So, Byeongchan</creator><creator>Kim, Seongwoo</creator><creator>Nam, Okhyun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9257-0558</orcidid></search><sort><creationdate>202006</creationdate><title>Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition</title><author>Kwak, Taemyung ; Lee, Jonggun ; Yoo, Geunho ; Shin, Heejin ; Choi, Uiho ; So, Byeongchan ; Kim, Seongwoo ; Nam, Okhyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-7e2ccc761b70e115552e54500e5f794ede3896102317d01cee6a0c8ad0c28ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic force microscopy</topic><topic>Boron</topic><topic>boron doping</topic><topic>Carrier mobility</topic><topic>Chemical vapor deposition</topic><topic>Contact resistance</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>diamond</topic><topic>Diamonds</topic><topic>electrical properties</topic><topic>Flat surfaces</topic><topic>Hall effect</topic><topic>heteroepitaxy</topic><topic>Microwave plasmas</topic><topic>Room temperature</topic><topic>Semiconductor materials</topic><topic>Substrates</topic><topic>Surface properties</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwak, Taemyung</creatorcontrib><creatorcontrib>Lee, Jonggun</creatorcontrib><creatorcontrib>Yoo, Geunho</creatorcontrib><creatorcontrib>Shin, Heejin</creatorcontrib><creatorcontrib>Choi, Uiho</creatorcontrib><creatorcontrib>So, Byeongchan</creatorcontrib><creatorcontrib>Kim, Seongwoo</creatorcontrib><creatorcontrib>Nam, Okhyun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwak, Taemyung</au><au>Lee, Jonggun</au><au>Yoo, Geunho</au><au>Shin, Heejin</au><au>Choi, Uiho</au><au>So, Byeongchan</au><au>Kim, Seongwoo</au><au>Nam, Okhyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-06</date><risdate>2020</risdate><volume>217</volume><issue>12</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat surface morphology of the substrate, the MPCVD‐grown boron‐doped diamond layer exhibit excellent surface properties and crystallinity, as measured by X‐ray diffraction and atomic force microscopy. The temperature‐dependent Hall effect measurements are conducted at temperature ranges between 300–800 K with cloverleaf‐shaped van der Pauw geometry. The hole concentration of boron‐doped diamond samples is between 1.1 × 1015 and 5 × 1019 cm−3 at room temperature, and the resistivity is controlled between 10−1 and 20 Ω cm by changing boron to carbon ratio. A specific contact resistance as low as 1.41 × 10−4 Ω cm2 is obtained via annealing at 500 °C. The activation energy of the boron‐doped diamond layers is reduced from 0.35 to 0.12 eV as the amount of boron dopant increases, which is attributed to the formation of impurity band. Finally, the change in the carrier mobility of boron‐doped heteroepitaxial diamond is discussed based on the scattering mechanism.
Herein, it is demonstrated that boron‐doped diamond layer is grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900973</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9257-0558</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2020-06, Vol.217 (12), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2414431128 |
source | Wiley Online Library All Journals |
subjects | Atomic force microscopy Boron boron doping Carrier mobility Chemical vapor deposition Contact resistance Crystal growth Crystal structure Crystallinity diamond Diamonds electrical properties Flat surfaces Hall effect heteroepitaxy Microwave plasmas Room temperature Semiconductor materials Substrates Surface properties Temperature dependence |
title | Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%E2%80%90Doped%20Single%E2%80%90Crystal%20Diamond%20Growth%20on%20Heteroepitaxial%20Diamond%20Substrate%20Using%20Microwave%20Plasma%20Chemical%20Vapor%20Deposition&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Kwak,%20Taemyung&rft.date=2020-06&rft.volume=217&rft.issue=12&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900973&rft_dat=%3Cproquest_cross%3E2414431128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414431128&rft_id=info:pmid/&rfr_iscdi=true |