The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics

Different inertia representations can lead to different formulations of the differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper, the inertia representations are classified into α -type and γ -type, according to the additional parameters in the kinetic energy....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multibody system dynamics 2020-07, Vol.49 (3), p.237-270
Hauptverfasser: Xu, Xiaoming, Luo, Jiahui, Wu, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 3
container_start_page 237
container_title Multibody system dynamics
container_volume 49
creator Xu, Xiaoming
Luo, Jiahui
Wu, Zhigang
description Different inertia representations can lead to different formulations of the differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper, the inertia representations are classified into α -type and γ -type, according to the additional parameters in the kinetic energy. These two types of representations and the corresponding parameters α and γ are theoretically equivalent if the constraint q T q = 1 is satisfied exactly. Nevertheless, the error estimation demonstrates that they can present entirely different numerical features in simulation and suggests that the parameter γ can be used to optimize the numerical performance of the integrations in simulation. To further verify the numerical difference between the inertia representations of α -type and γ -type, the corresponding modified Hamilton’s equations are discretized by the IMS (implicit midpoint scheme), EMS (energy–momentum preserving scheme) and Gauss–Lobatto SPARK methods. Numerical performance for the examples of the spinning symmetrical top is shown to result from the comprehensive effect of the discretization schemes including the distribution of discretized points and the convergence order, the inertia representations and their combinations. Numerical results further suggest that the integrations of γ -type are superior to those of α -type and the optimized values of γ can be used to achieve better numerical accuracy, convergence speed and stability.
doi_str_mv 10.1007/s11044-019-09697-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2414430681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414430681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-376c3052f70c64af33e4227d883d9928ae45268938459bb019bbe1784b7d0fcf3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFb_gKuA62heM5kspfiCgpsK7kJmclNTOpk2mYH235s6gjtXSW6-cy7nFMUtJfeUEPmQKCVCYEIVJqpSEh_OihktJcdMss_zfOe1wGUlyGVxldKGEEZLoWbFsPoCFMYOom_NFvngtiOEFlDvkLHWD74Peb4z0XQwQEynDx8gDt6gCLsICcJgTlhCro9oP5qMhfzGjUlgUfRrb1HT2yOyx2A636br4sKZbYKb33NefDw_rRavePn-8rZ4XOKWUzVgLquWk5I5SdpKGMc5CMakrWtulWK1AVGyqlY5WqmaJodvGqCyFo20xLWOz4u7yXcX-_0IadCbfow5T9JMUCE4qWqaKTZRbexTiuD0LvrOxKOmRJ_a1VO7Oi_QP-3qQxbxSZQyHNYQ_6z_UX0DfH9_wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414430681</pqid></control><display><type>article</type><title>The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics</title><source>SpringerNature Journals</source><creator>Xu, Xiaoming ; Luo, Jiahui ; Wu, Zhigang</creator><creatorcontrib>Xu, Xiaoming ; Luo, Jiahui ; Wu, Zhigang</creatorcontrib><description>Different inertia representations can lead to different formulations of the differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper, the inertia representations are classified into α -type and γ -type, according to the additional parameters in the kinetic energy. These two types of representations and the corresponding parameters α and γ are theoretically equivalent if the constraint q T q = 1 is satisfied exactly. Nevertheless, the error estimation demonstrates that they can present entirely different numerical features in simulation and suggests that the parameter γ can be used to optimize the numerical performance of the integrations in simulation. To further verify the numerical difference between the inertia representations of α -type and γ -type, the corresponding modified Hamilton’s equations are discretized by the IMS (implicit midpoint scheme), EMS (energy–momentum preserving scheme) and Gauss–Lobatto SPARK methods. Numerical performance for the examples of the spinning symmetrical top is shown to result from the comprehensive effect of the discretization schemes including the distribution of discretized points and the convergence order, the inertia representations and their combinations. Numerical results further suggest that the integrations of γ -type are superior to those of α -type and the optimized values of γ can be used to achieve better numerical accuracy, convergence speed and stability.</description><identifier>ISSN: 1384-5640</identifier><identifier>EISSN: 1573-272X</identifier><identifier>DOI: 10.1007/s11044-019-09697-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Computer simulation ; Control ; Convergence ; Differential equations ; Discretization ; Dynamical Systems ; Electrical Engineering ; Engineering ; Inertia ; Kinetic energy ; Mechanical Engineering ; Numerical methods ; Optimization ; Parameters ; Quaternions ; Representations ; Rigid structures ; Rigid-body dynamics ; Vibration</subject><ispartof>Multibody system dynamics, 2020-07, Vol.49 (3), p.237-270</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-376c3052f70c64af33e4227d883d9928ae45268938459bb019bbe1784b7d0fcf3</citedby><cites>FETCH-LOGICAL-c319t-376c3052f70c64af33e4227d883d9928ae45268938459bb019bbe1784b7d0fcf3</cites><orcidid>0000-0001-6153-8742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11044-019-09697-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11044-019-09697-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>Luo, Jiahui</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><title>The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics</title><title>Multibody system dynamics</title><addtitle>Multibody Syst Dyn</addtitle><description>Different inertia representations can lead to different formulations of the differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper, the inertia representations are classified into α -type and γ -type, according to the additional parameters in the kinetic energy. These two types of representations and the corresponding parameters α and γ are theoretically equivalent if the constraint q T q = 1 is satisfied exactly. Nevertheless, the error estimation demonstrates that they can present entirely different numerical features in simulation and suggests that the parameter γ can be used to optimize the numerical performance of the integrations in simulation. To further verify the numerical difference between the inertia representations of α -type and γ -type, the corresponding modified Hamilton’s equations are discretized by the IMS (implicit midpoint scheme), EMS (energy–momentum preserving scheme) and Gauss–Lobatto SPARK methods. Numerical performance for the examples of the spinning symmetrical top is shown to result from the comprehensive effect of the discretization schemes including the distribution of discretized points and the convergence order, the inertia representations and their combinations. Numerical results further suggest that the integrations of γ -type are superior to those of α -type and the optimized values of γ can be used to achieve better numerical accuracy, convergence speed and stability.</description><subject>Automotive Engineering</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Dynamical Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Inertia</subject><subject>Kinetic energy</subject><subject>Mechanical Engineering</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Quaternions</subject><subject>Representations</subject><subject>Rigid structures</subject><subject>Rigid-body dynamics</subject><subject>Vibration</subject><issn>1384-5640</issn><issn>1573-272X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsFb_gKuA62heM5kspfiCgpsK7kJmclNTOpk2mYH235s6gjtXSW6-cy7nFMUtJfeUEPmQKCVCYEIVJqpSEh_OihktJcdMss_zfOe1wGUlyGVxldKGEEZLoWbFsPoCFMYOom_NFvngtiOEFlDvkLHWD74Peb4z0XQwQEynDx8gDt6gCLsICcJgTlhCro9oP5qMhfzGjUlgUfRrb1HT2yOyx2A636br4sKZbYKb33NefDw_rRavePn-8rZ4XOKWUzVgLquWk5I5SdpKGMc5CMakrWtulWK1AVGyqlY5WqmaJodvGqCyFo20xLWOz4u7yXcX-_0IadCbfow5T9JMUCE4qWqaKTZRbexTiuD0LvrOxKOmRJ_a1VO7Oi_QP-3qQxbxSZQyHNYQ_6z_UX0DfH9_wA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Xu, Xiaoming</creator><creator>Luo, Jiahui</creator><creator>Wu, Zhigang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6153-8742</orcidid></search><sort><creationdate>20200701</creationdate><title>The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics</title><author>Xu, Xiaoming ; Luo, Jiahui ; Wu, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-376c3052f70c64af33e4227d883d9928ae45268938459bb019bbe1784b7d0fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Dynamical Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Inertia</topic><topic>Kinetic energy</topic><topic>Mechanical Engineering</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Quaternions</topic><topic>Representations</topic><topic>Rigid structures</topic><topic>Rigid-body dynamics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>Luo, Jiahui</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><collection>CrossRef</collection><jtitle>Multibody system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaoming</au><au>Luo, Jiahui</au><au>Wu, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics</atitle><jtitle>Multibody system dynamics</jtitle><stitle>Multibody Syst Dyn</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>49</volume><issue>3</issue><spage>237</spage><epage>270</epage><pages>237-270</pages><issn>1384-5640</issn><eissn>1573-272X</eissn><abstract>Different inertia representations can lead to different formulations of the differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper, the inertia representations are classified into α -type and γ -type, according to the additional parameters in the kinetic energy. These two types of representations and the corresponding parameters α and γ are theoretically equivalent if the constraint q T q = 1 is satisfied exactly. Nevertheless, the error estimation demonstrates that they can present entirely different numerical features in simulation and suggests that the parameter γ can be used to optimize the numerical performance of the integrations in simulation. To further verify the numerical difference between the inertia representations of α -type and γ -type, the corresponding modified Hamilton’s equations are discretized by the IMS (implicit midpoint scheme), EMS (energy–momentum preserving scheme) and Gauss–Lobatto SPARK methods. Numerical performance for the examples of the spinning symmetrical top is shown to result from the comprehensive effect of the discretization schemes including the distribution of discretized points and the convergence order, the inertia representations and their combinations. Numerical results further suggest that the integrations of γ -type are superior to those of α -type and the optimized values of γ can be used to achieve better numerical accuracy, convergence speed and stability.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11044-019-09697-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0001-6153-8742</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1384-5640
ispartof Multibody system dynamics, 2020-07, Vol.49 (3), p.237-270
issn 1384-5640
1573-272X
language eng
recordid cdi_proquest_journals_2414430681
source SpringerNature Journals
subjects Automotive Engineering
Computer simulation
Control
Convergence
Differential equations
Discretization
Dynamical Systems
Electrical Engineering
Engineering
Inertia
Kinetic energy
Mechanical Engineering
Numerical methods
Optimization
Parameters
Quaternions
Representations
Rigid structures
Rigid-body dynamics
Vibration
title The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20numerical%20influence%20of%20additional%20parameters%20of%20inertia%20representations%20for%20quaternion-based%20rigid%20body%20dynamics&rft.jtitle=Multibody%20system%20dynamics&rft.au=Xu,%20Xiaoming&rft.date=2020-07-01&rft.volume=49&rft.issue=3&rft.spage=237&rft.epage=270&rft.pages=237-270&rft.issn=1384-5640&rft.eissn=1573-272X&rft_id=info:doi/10.1007/s11044-019-09697-x&rft_dat=%3Cproquest_cross%3E2414430681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414430681&rft_id=info:pmid/&rfr_iscdi=true