The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics
Different inertia representations can lead to different formulations of the differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper, the inertia representations are classified into α -type and γ -type, according to the additional parameters in the kinetic energy....
Gespeichert in:
Veröffentlicht in: | Multibody system dynamics 2020-07, Vol.49 (3), p.237-270 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | 3 |
container_start_page | 237 |
container_title | Multibody system dynamics |
container_volume | 49 |
creator | Xu, Xiaoming Luo, Jiahui Wu, Zhigang |
description | Different inertia representations can lead to different formulations of the differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper, the inertia representations are classified into
α
-type and
γ
-type, according to the additional parameters in the kinetic energy. These two types of representations and the corresponding parameters
α
and
γ
are theoretically equivalent if the constraint
q
T
q
=
1
is satisfied exactly. Nevertheless, the error estimation demonstrates that they can present entirely different numerical features in simulation and suggests that the parameter
γ
can be used to optimize the numerical performance of the integrations in simulation. To further verify the numerical difference between the inertia representations of
α
-type and
γ
-type, the corresponding modified Hamilton’s equations are discretized by the IMS (implicit midpoint scheme), EMS (energy–momentum preserving scheme) and Gauss–Lobatto SPARK methods. Numerical performance for the examples of the spinning symmetrical top is shown to result from the comprehensive effect of the discretization schemes including the distribution of discretized points and the convergence order, the inertia representations and their combinations. Numerical results further suggest that the integrations of
γ
-type are superior to those of
α
-type and the optimized values of
γ
can be used to achieve better numerical accuracy, convergence speed and stability. |
doi_str_mv | 10.1007/s11044-019-09697-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2414430681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414430681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-376c3052f70c64af33e4227d883d9928ae45268938459bb019bbe1784b7d0fcf3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFb_gKuA62heM5kspfiCgpsK7kJmclNTOpk2mYH235s6gjtXSW6-cy7nFMUtJfeUEPmQKCVCYEIVJqpSEh_OihktJcdMss_zfOe1wGUlyGVxldKGEEZLoWbFsPoCFMYOom_NFvngtiOEFlDvkLHWD74Peb4z0XQwQEynDx8gDt6gCLsICcJgTlhCro9oP5qMhfzGjUlgUfRrb1HT2yOyx2A636br4sKZbYKb33NefDw_rRavePn-8rZ4XOKWUzVgLquWk5I5SdpKGMc5CMakrWtulWK1AVGyqlY5WqmaJodvGqCyFo20xLWOz4u7yXcX-_0IadCbfow5T9JMUCE4qWqaKTZRbexTiuD0LvrOxKOmRJ_a1VO7Oi_QP-3qQxbxSZQyHNYQ_6z_UX0DfH9_wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414430681</pqid></control><display><type>article</type><title>The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics</title><source>SpringerNature Journals</source><creator>Xu, Xiaoming ; Luo, Jiahui ; Wu, Zhigang</creator><creatorcontrib>Xu, Xiaoming ; Luo, Jiahui ; Wu, Zhigang</creatorcontrib><description>Different inertia representations can lead to different formulations of the differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper, the inertia representations are classified into
α
-type and
γ
-type, according to the additional parameters in the kinetic energy. These two types of representations and the corresponding parameters
α
and
γ
are theoretically equivalent if the constraint
q
T
q
=
1
is satisfied exactly. Nevertheless, the error estimation demonstrates that they can present entirely different numerical features in simulation and suggests that the parameter
γ
can be used to optimize the numerical performance of the integrations in simulation. To further verify the numerical difference between the inertia representations of
α
-type and
γ
-type, the corresponding modified Hamilton’s equations are discretized by the IMS (implicit midpoint scheme), EMS (energy–momentum preserving scheme) and Gauss–Lobatto SPARK methods. Numerical performance for the examples of the spinning symmetrical top is shown to result from the comprehensive effect of the discretization schemes including the distribution of discretized points and the convergence order, the inertia representations and their combinations. Numerical results further suggest that the integrations of
γ
-type are superior to those of
α
-type and the optimized values of
γ
can be used to achieve better numerical accuracy, convergence speed and stability.</description><identifier>ISSN: 1384-5640</identifier><identifier>EISSN: 1573-272X</identifier><identifier>DOI: 10.1007/s11044-019-09697-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Computer simulation ; Control ; Convergence ; Differential equations ; Discretization ; Dynamical Systems ; Electrical Engineering ; Engineering ; Inertia ; Kinetic energy ; Mechanical Engineering ; Numerical methods ; Optimization ; Parameters ; Quaternions ; Representations ; Rigid structures ; Rigid-body dynamics ; Vibration</subject><ispartof>Multibody system dynamics, 2020-07, Vol.49 (3), p.237-270</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-376c3052f70c64af33e4227d883d9928ae45268938459bb019bbe1784b7d0fcf3</citedby><cites>FETCH-LOGICAL-c319t-376c3052f70c64af33e4227d883d9928ae45268938459bb019bbe1784b7d0fcf3</cites><orcidid>0000-0001-6153-8742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11044-019-09697-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11044-019-09697-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>Luo, Jiahui</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><title>The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics</title><title>Multibody system dynamics</title><addtitle>Multibody Syst Dyn</addtitle><description>Different inertia representations can lead to different formulations of the differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper, the inertia representations are classified into
α
-type and
γ
-type, according to the additional parameters in the kinetic energy. These two types of representations and the corresponding parameters
α
and
γ
are theoretically equivalent if the constraint
q
T
q
=
1
is satisfied exactly. Nevertheless, the error estimation demonstrates that they can present entirely different numerical features in simulation and suggests that the parameter
γ
can be used to optimize the numerical performance of the integrations in simulation. To further verify the numerical difference between the inertia representations of
α
-type and
γ
-type, the corresponding modified Hamilton’s equations are discretized by the IMS (implicit midpoint scheme), EMS (energy–momentum preserving scheme) and Gauss–Lobatto SPARK methods. Numerical performance for the examples of the spinning symmetrical top is shown to result from the comprehensive effect of the discretization schemes including the distribution of discretized points and the convergence order, the inertia representations and their combinations. Numerical results further suggest that the integrations of
γ
-type are superior to those of
α
-type and the optimized values of
γ
can be used to achieve better numerical accuracy, convergence speed and stability.</description><subject>Automotive Engineering</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Dynamical Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Inertia</subject><subject>Kinetic energy</subject><subject>Mechanical Engineering</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Quaternions</subject><subject>Representations</subject><subject>Rigid structures</subject><subject>Rigid-body dynamics</subject><subject>Vibration</subject><issn>1384-5640</issn><issn>1573-272X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsFb_gKuA62heM5kspfiCgpsK7kJmclNTOpk2mYH235s6gjtXSW6-cy7nFMUtJfeUEPmQKCVCYEIVJqpSEh_OihktJcdMss_zfOe1wGUlyGVxldKGEEZLoWbFsPoCFMYOom_NFvngtiOEFlDvkLHWD74Peb4z0XQwQEynDx8gDt6gCLsICcJgTlhCro9oP5qMhfzGjUlgUfRrb1HT2yOyx2A636br4sKZbYKb33NefDw_rRavePn-8rZ4XOKWUzVgLquWk5I5SdpKGMc5CMakrWtulWK1AVGyqlY5WqmaJodvGqCyFo20xLWOz4u7yXcX-_0IadCbfow5T9JMUCE4qWqaKTZRbexTiuD0LvrOxKOmRJ_a1VO7Oi_QP-3qQxbxSZQyHNYQ_6z_UX0DfH9_wA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Xu, Xiaoming</creator><creator>Luo, Jiahui</creator><creator>Wu, Zhigang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6153-8742</orcidid></search><sort><creationdate>20200701</creationdate><title>The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics</title><author>Xu, Xiaoming ; Luo, Jiahui ; Wu, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-376c3052f70c64af33e4227d883d9928ae45268938459bb019bbe1784b7d0fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Dynamical Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Inertia</topic><topic>Kinetic energy</topic><topic>Mechanical Engineering</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Quaternions</topic><topic>Representations</topic><topic>Rigid structures</topic><topic>Rigid-body dynamics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>Luo, Jiahui</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><collection>CrossRef</collection><jtitle>Multibody system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaoming</au><au>Luo, Jiahui</au><au>Wu, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics</atitle><jtitle>Multibody system dynamics</jtitle><stitle>Multibody Syst Dyn</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>49</volume><issue>3</issue><spage>237</spage><epage>270</epage><pages>237-270</pages><issn>1384-5640</issn><eissn>1573-272X</eissn><abstract>Different inertia representations can lead to different formulations of the differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper, the inertia representations are classified into
α
-type and
γ
-type, according to the additional parameters in the kinetic energy. These two types of representations and the corresponding parameters
α
and
γ
are theoretically equivalent if the constraint
q
T
q
=
1
is satisfied exactly. Nevertheless, the error estimation demonstrates that they can present entirely different numerical features in simulation and suggests that the parameter
γ
can be used to optimize the numerical performance of the integrations in simulation. To further verify the numerical difference between the inertia representations of
α
-type and
γ
-type, the corresponding modified Hamilton’s equations are discretized by the IMS (implicit midpoint scheme), EMS (energy–momentum preserving scheme) and Gauss–Lobatto SPARK methods. Numerical performance for the examples of the spinning symmetrical top is shown to result from the comprehensive effect of the discretization schemes including the distribution of discretized points and the convergence order, the inertia representations and their combinations. Numerical results further suggest that the integrations of
γ
-type are superior to those of
α
-type and the optimized values of
γ
can be used to achieve better numerical accuracy, convergence speed and stability.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11044-019-09697-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0001-6153-8742</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-5640 |
ispartof | Multibody system dynamics, 2020-07, Vol.49 (3), p.237-270 |
issn | 1384-5640 1573-272X |
language | eng |
recordid | cdi_proquest_journals_2414430681 |
source | SpringerNature Journals |
subjects | Automotive Engineering Computer simulation Control Convergence Differential equations Discretization Dynamical Systems Electrical Engineering Engineering Inertia Kinetic energy Mechanical Engineering Numerical methods Optimization Parameters Quaternions Representations Rigid structures Rigid-body dynamics Vibration |
title | The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20numerical%20influence%20of%20additional%20parameters%20of%20inertia%20representations%20for%20quaternion-based%20rigid%20body%20dynamics&rft.jtitle=Multibody%20system%20dynamics&rft.au=Xu,%20Xiaoming&rft.date=2020-07-01&rft.volume=49&rft.issue=3&rft.spage=237&rft.epage=270&rft.pages=237-270&rft.issn=1384-5640&rft.eissn=1573-272X&rft_id=info:doi/10.1007/s11044-019-09697-x&rft_dat=%3Cproquest_cross%3E2414430681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414430681&rft_id=info:pmid/&rfr_iscdi=true |