Modeling and Experimental Validation of the Chaotic Behavior of a Robot Whip
Although the whip is a common tool that has been used for thousands of years, there have been very few studies on its dynamic behavior. With the advance of modern technology, designing and building soft- body robot whips has become feasible. This paper presents a study on the modeling and experiment...
Gespeichert in:
Veröffentlicht in: | Journal of mechanics 2020-06, Vol.36 (3), p.373-394 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 394 |
---|---|
container_issue | 3 |
container_start_page | 373 |
container_title | Journal of mechanics |
container_volume | 36 |
creator | Kwok, Thomas M. Li, Zheng Du, Ruxu Chen, Guanrong |
description | Although the whip is a common tool that has been used for thousands of years, there have been very few studies on its dynamic behavior. With the advance of modern technology, designing and building soft- body robot whips has become feasible. This paper presents a study on the modeling and experimental testing of a robot whip. The robot whip is modeled using a Pseudo-Rigid-Body Model (PRBM). The PRBM consists of a number of pseudo-rigid-links and pseudo-revolute-joints just like a multi-linkage pendulum. Because of its large number of degrees of freedom (DOF) and inherited underactuation, the robot whip exhibits prominent transient chaotic behavior. In particular, depending on the initial driving force, the chaos may start sooner or later, but will die down because of the gravity and air damping. The dynamic model is validated by experiments. It is interesting to note that with the same amount of force, the robot whip can generate a velocity more than 3 times and an acceleration up to 43 times faster than that of its rigid counterpart. This gives the robot whip some potential applications, such as whipping, wrapping and grabbing. This study also helps to develop other soft-body robots that involve nonlinear dynamics. |
doi_str_mv | 10.1017/jmech.2019.43 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2413960490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jmech_2019_43</cupid><sourcerecordid>2413960490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-95c561be01f085b583e515cc7ddd99cc4c15fc0fa2406aecfac69734849998e43</originalsourceid><addsrcrecordid>eNptkM1LxDAQxYMouKx79B7w3N1Mk7TJUZf1A1YE8eMY0jTZZuk2Ne2K_ve27oIX5zLD8Js3vIfQJZA5EMgX25011TwlIOeMnqAJCIBEpJCdDnOe5kkOEs7RrOu2ZCgmiaB8gtaPobS1bzZYNyVefbU2-p1tel3jN137Uvc-NDg43FcWLysdem_wja30pw9x3Gv8HIrQ4_fKtxfozOm6s7Njn6LX29XL8j5ZP909LK_XiaGM9YnkhmdQWAKOCF5wQS0HbkxelqWUxjAD3BnidMpIpq1x2mQyp0wwKaWwjE7R1UG3jeFjb7tebcM-NsNLlTKgMhvtDVRyoEwMXRetU-3gTcdvBUSNmanfzNSYmWJ04BdHXu-K6MuN_ZP9_-IHF-xuhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413960490</pqid></control><display><type>article</type><title>Modeling and Experimental Validation of the Chaotic Behavior of a Robot Whip</title><source>Oxford Journals Open Access Collection</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge University Press Journals Complete</source><creator>Kwok, Thomas M. ; Li, Zheng ; Du, Ruxu ; Chen, Guanrong</creator><creatorcontrib>Kwok, Thomas M. ; Li, Zheng ; Du, Ruxu ; Chen, Guanrong</creatorcontrib><description>Although the whip is a common tool that has been used for thousands of years, there have been very few studies on its dynamic behavior. With the advance of modern technology, designing and building soft- body robot whips has become feasible. This paper presents a study on the modeling and experimental testing of a robot whip. The robot whip is modeled using a Pseudo-Rigid-Body Model (PRBM). The PRBM consists of a number of pseudo-rigid-links and pseudo-revolute-joints just like a multi-linkage pendulum. Because of its large number of degrees of freedom (DOF) and inherited underactuation, the robot whip exhibits prominent transient chaotic behavior. In particular, depending on the initial driving force, the chaos may start sooner or later, but will die down because of the gravity and air damping. The dynamic model is validated by experiments. It is interesting to note that with the same amount of force, the robot whip can generate a velocity more than 3 times and an acceleration up to 43 times faster than that of its rigid counterpart. This gives the robot whip some potential applications, such as whipping, wrapping and grabbing. This study also helps to develop other soft-body robots that involve nonlinear dynamics.</description><identifier>ISSN: 1727-7191</identifier><identifier>EISSN: 1811-8216</identifier><identifier>DOI: 10.1017/jmech.2019.43</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acceleration ; Chaos theory ; Damping ; Degrees of freedom ; Dynamic models ; Modelling ; Nonlinear dynamics ; Pendulums ; Robots</subject><ispartof>Journal of mechanics, 2020-06, Vol.36 (3), p.373-394</ispartof><rights>Copyright © 2019 The Society of Theoretical and Applied Mechanics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-95c561be01f085b583e515cc7ddd99cc4c15fc0fa2406aecfac69734849998e43</citedby><cites>FETCH-LOGICAL-c344t-95c561be01f085b583e515cc7ddd99cc4c15fc0fa2406aecfac69734849998e43</cites><orcidid>0000-0002-4329-274X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1727719119000431/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Kwok, Thomas M.</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Du, Ruxu</creatorcontrib><creatorcontrib>Chen, Guanrong</creatorcontrib><title>Modeling and Experimental Validation of the Chaotic Behavior of a Robot Whip</title><title>Journal of mechanics</title><addtitle>J. mech</addtitle><description>Although the whip is a common tool that has been used for thousands of years, there have been very few studies on its dynamic behavior. With the advance of modern technology, designing and building soft- body robot whips has become feasible. This paper presents a study on the modeling and experimental testing of a robot whip. The robot whip is modeled using a Pseudo-Rigid-Body Model (PRBM). The PRBM consists of a number of pseudo-rigid-links and pseudo-revolute-joints just like a multi-linkage pendulum. Because of its large number of degrees of freedom (DOF) and inherited underactuation, the robot whip exhibits prominent transient chaotic behavior. In particular, depending on the initial driving force, the chaos may start sooner or later, but will die down because of the gravity and air damping. The dynamic model is validated by experiments. It is interesting to note that with the same amount of force, the robot whip can generate a velocity more than 3 times and an acceleration up to 43 times faster than that of its rigid counterpart. This gives the robot whip some potential applications, such as whipping, wrapping and grabbing. This study also helps to develop other soft-body robots that involve nonlinear dynamics.</description><subject>Acceleration</subject><subject>Chaos theory</subject><subject>Damping</subject><subject>Degrees of freedom</subject><subject>Dynamic models</subject><subject>Modelling</subject><subject>Nonlinear dynamics</subject><subject>Pendulums</subject><subject>Robots</subject><issn>1727-7191</issn><issn>1811-8216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkM1LxDAQxYMouKx79B7w3N1Mk7TJUZf1A1YE8eMY0jTZZuk2Ne2K_ve27oIX5zLD8Js3vIfQJZA5EMgX25011TwlIOeMnqAJCIBEpJCdDnOe5kkOEs7RrOu2ZCgmiaB8gtaPobS1bzZYNyVefbU2-p1tel3jN137Uvc-NDg43FcWLysdem_wja30pw9x3Gv8HIrQ4_fKtxfozOm6s7Njn6LX29XL8j5ZP909LK_XiaGM9YnkhmdQWAKOCF5wQS0HbkxelqWUxjAD3BnidMpIpq1x2mQyp0wwKaWwjE7R1UG3jeFjb7tebcM-NsNLlTKgMhvtDVRyoEwMXRetU-3gTcdvBUSNmanfzNSYmWJ04BdHXu-K6MuN_ZP9_-IHF-xuhw</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Kwok, Thomas M.</creator><creator>Li, Zheng</creator><creator>Du, Ruxu</creator><creator>Chen, Guanrong</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4329-274X</orcidid></search><sort><creationdate>202006</creationdate><title>Modeling and Experimental Validation of the Chaotic Behavior of a Robot Whip</title><author>Kwok, Thomas M. ; Li, Zheng ; Du, Ruxu ; Chen, Guanrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-95c561be01f085b583e515cc7ddd99cc4c15fc0fa2406aecfac69734849998e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Chaos theory</topic><topic>Damping</topic><topic>Degrees of freedom</topic><topic>Dynamic models</topic><topic>Modelling</topic><topic>Nonlinear dynamics</topic><topic>Pendulums</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwok, Thomas M.</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Du, Ruxu</creatorcontrib><creatorcontrib>Chen, Guanrong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwok, Thomas M.</au><au>Li, Zheng</au><au>Du, Ruxu</au><au>Chen, Guanrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Experimental Validation of the Chaotic Behavior of a Robot Whip</atitle><jtitle>Journal of mechanics</jtitle><addtitle>J. mech</addtitle><date>2020-06</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>373</spage><epage>394</epage><pages>373-394</pages><issn>1727-7191</issn><eissn>1811-8216</eissn><abstract>Although the whip is a common tool that has been used for thousands of years, there have been very few studies on its dynamic behavior. With the advance of modern technology, designing and building soft- body robot whips has become feasible. This paper presents a study on the modeling and experimental testing of a robot whip. The robot whip is modeled using a Pseudo-Rigid-Body Model (PRBM). The PRBM consists of a number of pseudo-rigid-links and pseudo-revolute-joints just like a multi-linkage pendulum. Because of its large number of degrees of freedom (DOF) and inherited underactuation, the robot whip exhibits prominent transient chaotic behavior. In particular, depending on the initial driving force, the chaos may start sooner or later, but will die down because of the gravity and air damping. The dynamic model is validated by experiments. It is interesting to note that with the same amount of force, the robot whip can generate a velocity more than 3 times and an acceleration up to 43 times faster than that of its rigid counterpart. This gives the robot whip some potential applications, such as whipping, wrapping and grabbing. This study also helps to develop other soft-body robots that involve nonlinear dynamics.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jmech.2019.43</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4329-274X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1727-7191 |
ispartof | Journal of mechanics, 2020-06, Vol.36 (3), p.373-394 |
issn | 1727-7191 1811-8216 |
language | eng |
recordid | cdi_proquest_journals_2413960490 |
source | Oxford Journals Open Access Collection; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge University Press Journals Complete |
subjects | Acceleration Chaos theory Damping Degrees of freedom Dynamic models Modelling Nonlinear dynamics Pendulums Robots |
title | Modeling and Experimental Validation of the Chaotic Behavior of a Robot Whip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Experimental%20Validation%20of%20the%20Chaotic%20Behavior%20of%20a%20Robot%20Whip&rft.jtitle=Journal%20of%20mechanics&rft.au=Kwok,%20Thomas%20M.&rft.date=2020-06&rft.volume=36&rft.issue=3&rft.spage=373&rft.epage=394&rft.pages=373-394&rft.issn=1727-7191&rft.eissn=1811-8216&rft_id=info:doi/10.1017/jmech.2019.43&rft_dat=%3Cproquest_cross%3E2413960490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413960490&rft_id=info:pmid/&rft_cupid=10_1017_jmech_2019_43&rfr_iscdi=true |