Surface property modification of biocompatible material based on polylactic acid by ion implantation

The investigations of the surface physicochemical and biological properties of polylactic acid modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C+ and Ar+) and 40 keV (for Ag2+) are described. X-ray photoelectron sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2020-04, Vol.388, p.125529-8, Article 125529
Hauptverfasser: Kurzina, I.A., Laput, O.A., Zuza, D.A., Vasenina, I.V., Salvadori, M.C., Savkin, K.P., Lytkina, D.N., Botvin, V.V., Kalashnikov, M.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 125529
container_title Surface & coatings technology
container_volume 388
creator Kurzina, I.A.
Laput, O.A.
Zuza, D.A.
Vasenina, I.V.
Salvadori, M.C.
Savkin, K.P.
Lytkina, D.N.
Botvin, V.V.
Kalashnikov, M.P.
description The investigations of the surface physicochemical and biological properties of polylactic acid modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C+ and Ar+) and 40 keV (for Ag2+) are described. X-ray photoelectron spectroscopy revealed that chemical bond ratio in polylactic acid is alternated indicating that different chemical processes take place depending on the implanted ion kind. Chemical reactions that occur during ion implantation of polylactic acid are proposed. X-ray diffraction analysis shows the degree of crystallinity decrease for all the ion types that leads to microhardness and elastic modulus decreasing. Silver is established to form metal nanoparticle into subsurface layer of polylactic acid with the average size of 2–3 nm. It was shown by atomic force microscopy that the higher irradiation doses the lower the surface roughness of polylactic acid that results in hydrophilicity improvement. The cytotoxicity investigation on three individual donor macrophages shows that Ag-implanted polylactic acid has no negative impact on the immune system cells and can be very promising material for biomedical application. •PLA chemical bond ratio is alternated after ion implantation.•Chemical reactions that occur during ion implantation of PLA are proposed.•Implanted silver forms 2–3 nm size metal nanoparticle into the subsurface layer of PLA.•Surface roughness of PLA decreases with the dose enhancing•Ag-implanted polylactic acid has no negative impact on the immune system cells.
doi_str_mv 10.1016/j.surfcoat.2020.125529
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2413949608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897220301985</els_id><sourcerecordid>2413949608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-1c7ded9b5ae734e296616cacfb6317944934c12cc25d4b985f4f0b27c45de3b63</originalsourceid><addsrcrecordid>eNqNkE2LFDEQhoO44Li7f0ECHqVn89UfuSmDqwsLHnTPIalUIEN3p01nlPn3ZuzVq55SCe9TqXoIecPZnjPe3R336ykHSLbsBRP1UbSt0C_Ijg-9bqRU_UuyY6Ltm0H34hV5va5HxhjvtdoR_7WyFpAuOS2Yy5lOyccQwZaYZpoCdTFBmpZ6dyPSyRbM0Y7U2RU9rZEljefRQolALURP3ZleyDgto53L7zY35CrYccXb5_OaPN1__Hb43Dx--fRw-PDYgFSsNBx6j1671mIvFQrddbwDC8F18jKt0lIBFwCi9crpoQ0qMCd6UK1HWUPX5O3Wty7z_YRrMcd0ynP90gjFpVa6Y0NNdVsKclrXjMEsOU42nw1n5mLUHM0fo-Zi1GxGK_huA3-iS2GFiDPgX7gqbUWnB61qxWRND_-fPsTN1CGd5lLR9xuKVdaPiNk84z5mhGJ8iv-a9Rf60KVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413949608</pqid></control><display><type>article</type><title>Surface property modification of biocompatible material based on polylactic acid by ion implantation</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kurzina, I.A. ; Laput, O.A. ; Zuza, D.A. ; Vasenina, I.V. ; Salvadori, M.C. ; Savkin, K.P. ; Lytkina, D.N. ; Botvin, V.V. ; Kalashnikov, M.P.</creator><creatorcontrib>Kurzina, I.A. ; Laput, O.A. ; Zuza, D.A. ; Vasenina, I.V. ; Salvadori, M.C. ; Savkin, K.P. ; Lytkina, D.N. ; Botvin, V.V. ; Kalashnikov, M.P.</creatorcontrib><description>The investigations of the surface physicochemical and biological properties of polylactic acid modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C+ and Ar+) and 40 keV (for Ag2+) are described. X-ray photoelectron spectroscopy revealed that chemical bond ratio in polylactic acid is alternated indicating that different chemical processes take place depending on the implanted ion kind. Chemical reactions that occur during ion implantation of polylactic acid are proposed. X-ray diffraction analysis shows the degree of crystallinity decrease for all the ion types that leads to microhardness and elastic modulus decreasing. Silver is established to form metal nanoparticle into subsurface layer of polylactic acid with the average size of 2–3 nm. It was shown by atomic force microscopy that the higher irradiation doses the lower the surface roughness of polylactic acid that results in hydrophilicity improvement. The cytotoxicity investigation on three individual donor macrophages shows that Ag-implanted polylactic acid has no negative impact on the immune system cells and can be very promising material for biomedical application. •PLA chemical bond ratio is alternated after ion implantation.•Chemical reactions that occur during ion implantation of PLA are proposed.•Implanted silver forms 2–3 nm size metal nanoparticle into the subsurface layer of PLA.•Surface roughness of PLA decreases with the dose enhancing•Ag-implanted polylactic acid has no negative impact on the immune system cells.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2020.125529</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Argon ; Atomic force microscopy ; Biocompatibility ; Biodegradable materials ; Biodegradable polymer ; Biological properties ; Biomedical materials ; Chemical bonds ; Chemical reactions ; Cytotoxicity ; Degree of crystallinity ; Immune system ; Ion implantation ; Macrophages ; Materials Science ; Materials Science, Coatings &amp; Films ; Microhardness ; Modulus of elasticity ; Nanoparticles ; Photoelectrons ; Physical Sciences ; Physics ; Physics, Applied ; Polylactic acid ; Science &amp; Technology ; Silver ; Surface morphology ; Surface properties ; Surface roughness ; Technology ; Toxicity</subject><ispartof>Surface &amp; coatings technology, 2020-04, Vol.388, p.125529-8, Article 125529</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526989400003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c340t-1c7ded9b5ae734e296616cacfb6317944934c12cc25d4b985f4f0b27c45de3b63</citedby><cites>FETCH-LOGICAL-c340t-1c7ded9b5ae734e296616cacfb6317944934c12cc25d4b985f4f0b27c45de3b63</cites><orcidid>0000-0003-4976-2295 ; 0000-0001-9122-5069 ; 0000-0001-8768-3403 ; 0000-0001-6984-8550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2020.125529$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,28257,46004</link.rule.ids></links><search><creatorcontrib>Kurzina, I.A.</creatorcontrib><creatorcontrib>Laput, O.A.</creatorcontrib><creatorcontrib>Zuza, D.A.</creatorcontrib><creatorcontrib>Vasenina, I.V.</creatorcontrib><creatorcontrib>Salvadori, M.C.</creatorcontrib><creatorcontrib>Savkin, K.P.</creatorcontrib><creatorcontrib>Lytkina, D.N.</creatorcontrib><creatorcontrib>Botvin, V.V.</creatorcontrib><creatorcontrib>Kalashnikov, M.P.</creatorcontrib><title>Surface property modification of biocompatible material based on polylactic acid by ion implantation</title><title>Surface &amp; coatings technology</title><addtitle>SURF COAT TECH</addtitle><description>The investigations of the surface physicochemical and biological properties of polylactic acid modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C+ and Ar+) and 40 keV (for Ag2+) are described. X-ray photoelectron spectroscopy revealed that chemical bond ratio in polylactic acid is alternated indicating that different chemical processes take place depending on the implanted ion kind. Chemical reactions that occur during ion implantation of polylactic acid are proposed. X-ray diffraction analysis shows the degree of crystallinity decrease for all the ion types that leads to microhardness and elastic modulus decreasing. Silver is established to form metal nanoparticle into subsurface layer of polylactic acid with the average size of 2–3 nm. It was shown by atomic force microscopy that the higher irradiation doses the lower the surface roughness of polylactic acid that results in hydrophilicity improvement. The cytotoxicity investigation on three individual donor macrophages shows that Ag-implanted polylactic acid has no negative impact on the immune system cells and can be very promising material for biomedical application. •PLA chemical bond ratio is alternated after ion implantation.•Chemical reactions that occur during ion implantation of PLA are proposed.•Implanted silver forms 2–3 nm size metal nanoparticle into the subsurface layer of PLA.•Surface roughness of PLA decreases with the dose enhancing•Ag-implanted polylactic acid has no negative impact on the immune system cells.</description><subject>Argon</subject><subject>Atomic force microscopy</subject><subject>Biocompatibility</subject><subject>Biodegradable materials</subject><subject>Biodegradable polymer</subject><subject>Biological properties</subject><subject>Biomedical materials</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Cytotoxicity</subject><subject>Degree of crystallinity</subject><subject>Immune system</subject><subject>Ion implantation</subject><subject>Macrophages</subject><subject>Materials Science</subject><subject>Materials Science, Coatings &amp; Films</subject><subject>Microhardness</subject><subject>Modulus of elasticity</subject><subject>Nanoparticles</subject><subject>Photoelectrons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Polylactic acid</subject><subject>Science &amp; Technology</subject><subject>Silver</subject><subject>Surface morphology</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Technology</subject><subject>Toxicity</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE2LFDEQhoO44Li7f0ECHqVn89UfuSmDqwsLHnTPIalUIEN3p01nlPn3ZuzVq55SCe9TqXoIecPZnjPe3R336ykHSLbsBRP1UbSt0C_Ijg-9bqRU_UuyY6Ltm0H34hV5va5HxhjvtdoR_7WyFpAuOS2Yy5lOyccQwZaYZpoCdTFBmpZ6dyPSyRbM0Y7U2RU9rZEljefRQolALURP3ZleyDgto53L7zY35CrYccXb5_OaPN1__Hb43Dx--fRw-PDYgFSsNBx6j1671mIvFQrddbwDC8F18jKt0lIBFwCi9crpoQ0qMCd6UK1HWUPX5O3Wty7z_YRrMcd0ynP90gjFpVa6Y0NNdVsKclrXjMEsOU42nw1n5mLUHM0fo-Zi1GxGK_huA3-iS2GFiDPgX7gqbUWnB61qxWRND_-fPsTN1CGd5lLR9xuKVdaPiNk84z5mhGJ8iv-a9Rf60KVE</recordid><startdate>20200425</startdate><enddate>20200425</enddate><creator>Kurzina, I.A.</creator><creator>Laput, O.A.</creator><creator>Zuza, D.A.</creator><creator>Vasenina, I.V.</creator><creator>Salvadori, M.C.</creator><creator>Savkin, K.P.</creator><creator>Lytkina, D.N.</creator><creator>Botvin, V.V.</creator><creator>Kalashnikov, M.P.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier BV</general><scope>95M</scope><scope>ABMOY</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4976-2295</orcidid><orcidid>https://orcid.org/0000-0001-9122-5069</orcidid><orcidid>https://orcid.org/0000-0001-8768-3403</orcidid><orcidid>https://orcid.org/0000-0001-6984-8550</orcidid></search><sort><creationdate>20200425</creationdate><title>Surface property modification of biocompatible material based on polylactic acid by ion implantation</title><author>Kurzina, I.A. ; Laput, O.A. ; Zuza, D.A. ; Vasenina, I.V. ; Salvadori, M.C. ; Savkin, K.P. ; Lytkina, D.N. ; Botvin, V.V. ; Kalashnikov, M.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-1c7ded9b5ae734e296616cacfb6317944934c12cc25d4b985f4f0b27c45de3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Argon</topic><topic>Atomic force microscopy</topic><topic>Biocompatibility</topic><topic>Biodegradable materials</topic><topic>Biodegradable polymer</topic><topic>Biological properties</topic><topic>Biomedical materials</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Cytotoxicity</topic><topic>Degree of crystallinity</topic><topic>Immune system</topic><topic>Ion implantation</topic><topic>Macrophages</topic><topic>Materials Science</topic><topic>Materials Science, Coatings &amp; Films</topic><topic>Microhardness</topic><topic>Modulus of elasticity</topic><topic>Nanoparticles</topic><topic>Photoelectrons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Polylactic acid</topic><topic>Science &amp; Technology</topic><topic>Silver</topic><topic>Surface morphology</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Technology</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurzina, I.A.</creatorcontrib><creatorcontrib>Laput, O.A.</creatorcontrib><creatorcontrib>Zuza, D.A.</creatorcontrib><creatorcontrib>Vasenina, I.V.</creatorcontrib><creatorcontrib>Salvadori, M.C.</creatorcontrib><creatorcontrib>Savkin, K.P.</creatorcontrib><creatorcontrib>Lytkina, D.N.</creatorcontrib><creatorcontrib>Botvin, V.V.</creatorcontrib><creatorcontrib>Kalashnikov, M.P.</creatorcontrib><collection>Conference Proceedings Citation Index - Science (CPCI-S)</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S) 2020</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurzina, I.A.</au><au>Laput, O.A.</au><au>Zuza, D.A.</au><au>Vasenina, I.V.</au><au>Salvadori, M.C.</au><au>Savkin, K.P.</au><au>Lytkina, D.N.</au><au>Botvin, V.V.</au><au>Kalashnikov, M.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface property modification of biocompatible material based on polylactic acid by ion implantation</atitle><jtitle>Surface &amp; coatings technology</jtitle><stitle>SURF COAT TECH</stitle><date>2020-04-25</date><risdate>2020</risdate><volume>388</volume><spage>125529</spage><epage>8</epage><pages>125529-8</pages><artnum>125529</artnum><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>The investigations of the surface physicochemical and biological properties of polylactic acid modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C+ and Ar+) and 40 keV (for Ag2+) are described. X-ray photoelectron spectroscopy revealed that chemical bond ratio in polylactic acid is alternated indicating that different chemical processes take place depending on the implanted ion kind. Chemical reactions that occur during ion implantation of polylactic acid are proposed. X-ray diffraction analysis shows the degree of crystallinity decrease for all the ion types that leads to microhardness and elastic modulus decreasing. Silver is established to form metal nanoparticle into subsurface layer of polylactic acid with the average size of 2–3 nm. It was shown by atomic force microscopy that the higher irradiation doses the lower the surface roughness of polylactic acid that results in hydrophilicity improvement. The cytotoxicity investigation on three individual donor macrophages shows that Ag-implanted polylactic acid has no negative impact on the immune system cells and can be very promising material for biomedical application. •PLA chemical bond ratio is alternated after ion implantation.•Chemical reactions that occur during ion implantation of PLA are proposed.•Implanted silver forms 2–3 nm size metal nanoparticle into the subsurface layer of PLA.•Surface roughness of PLA decreases with the dose enhancing•Ag-implanted polylactic acid has no negative impact on the immune system cells.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2020.125529</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4976-2295</orcidid><orcidid>https://orcid.org/0000-0001-9122-5069</orcidid><orcidid>https://orcid.org/0000-0001-8768-3403</orcidid><orcidid>https://orcid.org/0000-0001-6984-8550</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2020-04, Vol.388, p.125529-8, Article 125529
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_2413949608
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Argon
Atomic force microscopy
Biocompatibility
Biodegradable materials
Biodegradable polymer
Biological properties
Biomedical materials
Chemical bonds
Chemical reactions
Cytotoxicity
Degree of crystallinity
Immune system
Ion implantation
Macrophages
Materials Science
Materials Science, Coatings & Films
Microhardness
Modulus of elasticity
Nanoparticles
Photoelectrons
Physical Sciences
Physics
Physics, Applied
Polylactic acid
Science & Technology
Silver
Surface morphology
Surface properties
Surface roughness
Technology
Toxicity
title Surface property modification of biocompatible material based on polylactic acid by ion implantation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20property%20modification%20of%20biocompatible%20material%20based%20on%20polylactic%20acid%20by%20ion%20implantation&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Kurzina,%20I.A.&rft.date=2020-04-25&rft.volume=388&rft.spage=125529&rft.epage=8&rft.pages=125529-8&rft.artnum=125529&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2020.125529&rft_dat=%3Cproquest_webof%3E2413949608%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413949608&rft_id=info:pmid/&rft_els_id=S0257897220301985&rfr_iscdi=true