Adversarial representation learning for synthetic replacement of private attributes

Data privacy is an increasingly important aspect of many real-world Data sources that contain sensitive information may have immense potential which could be unlocked using the right privacy enhancing transformations, but current methods often fail to produce convincing output. Furthermore, finding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-02
Hauptverfasser: Martinsson, John, Zec, Edvin Listo, Gillblad, Daniel, Mogren, Olof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!