BRS cS: a hybrid recommendation model fusing multi-source heterogeneous data
Recommendation systems are often used to solve the problem of information overload on the Internet. Many types of data can be used for recommendations, and fusing different types of data can make recommendations more accurate. Most existing fusion recommendation models simply combine the recommendat...
Gespeichert in:
Veröffentlicht in: | EURASIP journal on wireless communications and networking 2020-06, Vol.2020 (1), Article 124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | EURASIP journal on wireless communications and networking |
container_volume | 2020 |
creator | Ji, Zhenyan Yang, Chun Wang, Huihui Armendáriz-iñigo, José Enrique Arce-Urriza, Marta |
description | Recommendation systems are often used to solve the problem of information overload on the Internet. Many types of data can be used for recommendations, and fusing different types of data can make recommendations more accurate. Most existing fusion recommendation models simply combine the recommendation results from different data instead of fully fusing multi-source heterogeneous data to make recommendations. Furthermore, users’ choices are usually affected by their direct and even indirect friends’ preferences. This paper proposes a hybrid recommendation model BRS
c
S (an acronym for BPR-Review-Score-Social). It fully fuses social data, score, and review together; uses improved BPR model to optimize the ranking; and trains them in a joint representation learning framework to get the top-
N
recommendations. User trust model is used to introduce social relationships into the rating and review data, PV-DBOW model is used to process the review data, and fully connected neural network is used to process the rating data. Experiments on Yelp public dataset show that the BRS
c
S algorithm proposed outperforms other recommendation algorithms such as BRS
c
, UserCF, and HRS
c
. The BRS
c
S model is also scalable and can fuse new types of data easily. |
doi_str_mv | 10.1186/s13638-020-01716-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2413795775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413795775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2082-df91945a30a7daf220294bd73b6c3453d7f38e584c5cabff5323890afb0181083</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgOprbTBJ3WrxBQbC6Dplc2imdSU1mFn17oyPoytU5i-__z-ED4ILgK0JkfZ0Jq5lEmGKEiSA1ogdgRmopEOFKHf7Zj8FJzhuMGeOKzsDi7nUJ7fIGGrjeN6l1MHkbu873zgxt7GEXnd_CMOa2X8Fu3A4tynFM1sO1H3yKK9_7OGZYcHMGjoLZZn_-M0_B-8P92_wJLV4en-e3C2QplhS5oIjilWHYCGcCpZgq3jjBmtoyXjEnApO-ktxW1jQhVIwyqbAJDSaSYMlOweXUu0vxY_R50JvyUl9OasoJE6oSoioUnSibYs7JB71LbWfSXhOsv6zpyZou1vS3NU1LiE2hXOB-5dNv9T-pT2shbuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413795775</pqid></control><display><type>article</type><title>BRS cS: a hybrid recommendation model fusing multi-source heterogeneous data</title><source>SpringerOpen</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Complete Journals</source><source>EZB Electronic Journals Library</source><creator>Ji, Zhenyan ; Yang, Chun ; Wang, Huihui ; Armendáriz-iñigo, José Enrique ; Arce-Urriza, Marta</creator><creatorcontrib>Ji, Zhenyan ; Yang, Chun ; Wang, Huihui ; Armendáriz-iñigo, José Enrique ; Arce-Urriza, Marta</creatorcontrib><description>Recommendation systems are often used to solve the problem of information overload on the Internet. Many types of data can be used for recommendations, and fusing different types of data can make recommendations more accurate. Most existing fusion recommendation models simply combine the recommendation results from different data instead of fully fusing multi-source heterogeneous data to make recommendations. Furthermore, users’ choices are usually affected by their direct and even indirect friends’ preferences. This paper proposes a hybrid recommendation model BRS
c
S (an acronym for BPR-Review-Score-Social). It fully fuses social data, score, and review together; uses improved BPR model to optimize the ranking; and trains them in a joint representation learning framework to get the top-
N
recommendations. User trust model is used to introduce social relationships into the rating and review data, PV-DBOW model is used to process the review data, and fully connected neural network is used to process the rating data. Experiments on Yelp public dataset show that the BRS
c
S algorithm proposed outperforms other recommendation algorithms such as BRS
c
, UserCF, and HRS
c
. The BRS
c
S model is also scalable and can fuse new types of data easily.</description><identifier>ISSN: 1687-1499</identifier><identifier>ISSN: 1687-1472</identifier><identifier>EISSN: 1687-1499</identifier><identifier>DOI: 10.1186/s13638-020-01716-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Communications Engineering ; Engineering ; Green Communication for Heterogeneous Internet of Things ; Information Systems Applications (incl.Internet) ; Networks ; Neural networks ; Recommender systems ; Signal,Image and Speech Processing</subject><ispartof>EURASIP journal on wireless communications and networking, 2020-06, Vol.2020 (1), Article 124</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2082-df91945a30a7daf220294bd73b6c3453d7f38e584c5cabff5323890afb0181083</citedby><cites>FETCH-LOGICAL-c2082-df91945a30a7daf220294bd73b6c3453d7f38e584c5cabff5323890afb0181083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s13638-020-01716-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1186/s13638-020-01716-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,41487,42188,42556,51318,51575</link.rule.ids></links><search><creatorcontrib>Ji, Zhenyan</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><creatorcontrib>Wang, Huihui</creatorcontrib><creatorcontrib>Armendáriz-iñigo, José Enrique</creatorcontrib><creatorcontrib>Arce-Urriza, Marta</creatorcontrib><title>BRS cS: a hybrid recommendation model fusing multi-source heterogeneous data</title><title>EURASIP journal on wireless communications and networking</title><addtitle>J Wireless Com Network</addtitle><description>Recommendation systems are often used to solve the problem of information overload on the Internet. Many types of data can be used for recommendations, and fusing different types of data can make recommendations more accurate. Most existing fusion recommendation models simply combine the recommendation results from different data instead of fully fusing multi-source heterogeneous data to make recommendations. Furthermore, users’ choices are usually affected by their direct and even indirect friends’ preferences. This paper proposes a hybrid recommendation model BRS
c
S (an acronym for BPR-Review-Score-Social). It fully fuses social data, score, and review together; uses improved BPR model to optimize the ranking; and trains them in a joint representation learning framework to get the top-
N
recommendations. User trust model is used to introduce social relationships into the rating and review data, PV-DBOW model is used to process the review data, and fully connected neural network is used to process the rating data. Experiments on Yelp public dataset show that the BRS
c
S algorithm proposed outperforms other recommendation algorithms such as BRS
c
, UserCF, and HRS
c
. The BRS
c
S model is also scalable and can fuse new types of data easily.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Engineering</subject><subject>Green Communication for Heterogeneous Internet of Things</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Recommender systems</subject><subject>Signal,Image and Speech Processing</subject><issn>1687-1499</issn><issn>1687-1472</issn><issn>1687-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWC8v4CrgOprbTBJ3WrxBQbC6Dplc2imdSU1mFn17oyPoytU5i-__z-ED4ILgK0JkfZ0Jq5lEmGKEiSA1ogdgRmopEOFKHf7Zj8FJzhuMGeOKzsDi7nUJ7fIGGrjeN6l1MHkbu873zgxt7GEXnd_CMOa2X8Fu3A4tynFM1sO1H3yKK9_7OGZYcHMGjoLZZn_-M0_B-8P92_wJLV4en-e3C2QplhS5oIjilWHYCGcCpZgq3jjBmtoyXjEnApO-ktxW1jQhVIwyqbAJDSaSYMlOweXUu0vxY_R50JvyUl9OasoJE6oSoioUnSibYs7JB71LbWfSXhOsv6zpyZou1vS3NU1LiE2hXOB-5dNv9T-pT2shbuo</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>Ji, Zhenyan</creator><creator>Yang, Chun</creator><creator>Wang, Huihui</creator><creator>Armendáriz-iñigo, José Enrique</creator><creator>Arce-Urriza, Marta</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200616</creationdate><title>BRS cS: a hybrid recommendation model fusing multi-source heterogeneous data</title><author>Ji, Zhenyan ; Yang, Chun ; Wang, Huihui ; Armendáriz-iñigo, José Enrique ; Arce-Urriza, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2082-df91945a30a7daf220294bd73b6c3453d7f38e584c5cabff5323890afb0181083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Engineering</topic><topic>Green Communication for Heterogeneous Internet of Things</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Recommender systems</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Zhenyan</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><creatorcontrib>Wang, Huihui</creatorcontrib><creatorcontrib>Armendáriz-iñigo, José Enrique</creatorcontrib><creatorcontrib>Arce-Urriza, Marta</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>EURASIP journal on wireless communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Zhenyan</au><au>Yang, Chun</au><au>Wang, Huihui</au><au>Armendáriz-iñigo, José Enrique</au><au>Arce-Urriza, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BRS cS: a hybrid recommendation model fusing multi-source heterogeneous data</atitle><jtitle>EURASIP journal on wireless communications and networking</jtitle><stitle>J Wireless Com Network</stitle><date>2020-06-16</date><risdate>2020</risdate><volume>2020</volume><issue>1</issue><artnum>124</artnum><issn>1687-1499</issn><issn>1687-1472</issn><eissn>1687-1499</eissn><abstract>Recommendation systems are often used to solve the problem of information overload on the Internet. Many types of data can be used for recommendations, and fusing different types of data can make recommendations more accurate. Most existing fusion recommendation models simply combine the recommendation results from different data instead of fully fusing multi-source heterogeneous data to make recommendations. Furthermore, users’ choices are usually affected by their direct and even indirect friends’ preferences. This paper proposes a hybrid recommendation model BRS
c
S (an acronym for BPR-Review-Score-Social). It fully fuses social data, score, and review together; uses improved BPR model to optimize the ranking; and trains them in a joint representation learning framework to get the top-
N
recommendations. User trust model is used to introduce social relationships into the rating and review data, PV-DBOW model is used to process the review data, and fully connected neural network is used to process the rating data. Experiments on Yelp public dataset show that the BRS
c
S algorithm proposed outperforms other recommendation algorithms such as BRS
c
, UserCF, and HRS
c
. The BRS
c
S model is also scalable and can fuse new types of data easily.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13638-020-01716-2</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1499 |
ispartof | EURASIP journal on wireless communications and networking, 2020-06, Vol.2020 (1), Article 124 |
issn | 1687-1499 1687-1472 1687-1499 |
language | eng |
recordid | cdi_proquest_journals_2413795775 |
source | SpringerOpen; DOAJ Directory of Open Access Journals; SpringerNature Complete Journals; EZB Electronic Journals Library |
subjects | Algorithms Communications Engineering Engineering Green Communication for Heterogeneous Internet of Things Information Systems Applications (incl.Internet) Networks Neural networks Recommender systems Signal,Image and Speech Processing |
title | BRS cS: a hybrid recommendation model fusing multi-source heterogeneous data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BRS%20cS:%20a%20hybrid%20recommendation%20model%20fusing%20multi-source%20heterogeneous%20data&rft.jtitle=EURASIP%20journal%20on%20wireless%20communications%20and%20networking&rft.au=Ji,%20Zhenyan&rft.date=2020-06-16&rft.volume=2020&rft.issue=1&rft.artnum=124&rft.issn=1687-1499&rft.eissn=1687-1499&rft_id=info:doi/10.1186/s13638-020-01716-2&rft_dat=%3Cproquest_cross%3E2413795775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413795775&rft_id=info:pmid/&rfr_iscdi=true |