Classify and Generate Reciprocally: Simultaneous Positive-Unlabelled Learning and Conditional Generation with Extra Data

The scarcity of class-labeled data is a ubiquitous bottleneck in many machine learning problems. While abundant unlabeled data typically exist and provide a potential solution, it is highly challenging to exploit them. In this paper, we address this problem by leveraging Positive-Unlabeled~(PU) clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Yu, Bing, Sun, Ke, Wang, He, Lin, Zhouchen, Zhu, Zhanxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!