Air pollution forecasting based on attention‐based LSTM neural network and ensemble learning
With air pollution having become a global concern, scientists are committed to working on its amelioration. In the field of air pollution prediction, there have been good results in experimental research so far, but few studies have integrated weather forecast information and the properties of air p...
Gespeichert in:
Veröffentlicht in: | Expert systems 2020-06, Vol.37 (3), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Expert systems |
container_volume | 37 |
creator | Liu, Duen‐Ren Lee, Shin‐Jye Huang, Yang Chiu, Chien‐Ju |
description | With air pollution having become a global concern, scientists are committed to working on its amelioration. In the field of air pollution prediction, there have been good results in experimental research so far, but few studies have integrated weather forecast information and the properties of air pollution drift. In this work, we propose a novel wind‐sensitive attention mechanism with a long short‐term memory (LSTM) neural network model to predict the air pollution ‐ PM2.5 concentrations by considering the influence of wind direction and speed on the changes of spatial–temporal PM2.5 concentrations in neighbouring areas. Preliminary predictions for PM2.5 are then made by an LSTM neural network regarding neighbouring pollution; these predictions are “paid attention to” and we finally apply an ensemble learning method based on eXtreme Gradient Boosting (XGBoost) to combine the preliminary predictions with weather forecasting to make second phase predictions of PM2.5. The experiment is conducted using PM2.5 data and weather forecast data. Our results illustrate that the proposed method is superior to other methods in predicting PM2.5 concentrations, including multi‐layer perceptron, support vector regression, LSTM neural network, and extreme gradient boosting algorithm. |
doi_str_mv | 10.1111/exsy.12511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2413762425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413762425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3541-4314c9ac638b24a0d39cc075697e77dd5a987100e7f85f0731905794c00567ef3</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFY3PsGAOyH1TuYvWZZSf6DiohV04zCd3EhqmtSZhNqdj-Az-iSmxrV3c-Dc754Lh5BzBiPWzRV-hN2IxZKxAzJgQiUR8FQckgHESkVCx3BMTkJYAQDTWg3Iy7jwdFOXZdsUdUXz2qOzoSmqV7q0ATPambZpsNqvvz-_enM2X9zTCltvy06abe3fqK0yilXA9bJEWqL1VRdySo5yWwY8-9MhebyeLia30ezh5m4ynkWOS8EiwZlwqXWKJ8tYWMh46hxoqVKNWmeZtGmiGQDqPJE5aM5SkDoVDkAqjTkfkos-d-Pr9xZDY1Z166vupYkF41rFIpYdddlTztcheMzNxhdr63eGgdn3Z_b9md_-Opj18LYocfcPaaZP8-f-5gcxQXNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413762425</pqid></control><display><type>article</type><title>Air pollution forecasting based on attention‐based LSTM neural network and ensemble learning</title><source>Wiley-Blackwell Journals</source><source>Business Source Complete</source><creator>Liu, Duen‐Ren ; Lee, Shin‐Jye ; Huang, Yang ; Chiu, Chien‐Ju</creator><creatorcontrib>Liu, Duen‐Ren ; Lee, Shin‐Jye ; Huang, Yang ; Chiu, Chien‐Ju</creatorcontrib><description>With air pollution having become a global concern, scientists are committed to working on its amelioration. In the field of air pollution prediction, there have been good results in experimental research so far, but few studies have integrated weather forecast information and the properties of air pollution drift. In this work, we propose a novel wind‐sensitive attention mechanism with a long short‐term memory (LSTM) neural network model to predict the air pollution ‐ PM2.5 concentrations by considering the influence of wind direction and speed on the changes of spatial–temporal PM2.5 concentrations in neighbouring areas. Preliminary predictions for PM2.5 are then made by an LSTM neural network regarding neighbouring pollution; these predictions are “paid attention to” and we finally apply an ensemble learning method based on eXtreme Gradient Boosting (XGBoost) to combine the preliminary predictions with weather forecasting to make second phase predictions of PM2.5. The experiment is conducted using PM2.5 data and weather forecast data. Our results illustrate that the proposed method is superior to other methods in predicting PM2.5 concentrations, including multi‐layer perceptron, support vector regression, LSTM neural network, and extreme gradient boosting algorithm.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12511</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Air pollution ; air pollution forecasting ; Algorithms ; attention mechanism ; Ensemble learning ; LSTM ; Neural networks ; Support vector machines ; Weather forecasting ; Wind direction ; Wind effects ; XGBoost</subject><ispartof>Expert systems, 2020-06, Vol.37 (3), p.n/a</ispartof><rights>2019 John Wiley & Sons, Ltd</rights><rights>2020 John Wiley & Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3541-4314c9ac638b24a0d39cc075697e77dd5a987100e7f85f0731905794c00567ef3</citedby><cites>FETCH-LOGICAL-c3541-4314c9ac638b24a0d39cc075697e77dd5a987100e7f85f0731905794c00567ef3</cites><orcidid>0000-0003-1180-0866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexsy.12511$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexsy.12511$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Liu, Duen‐Ren</creatorcontrib><creatorcontrib>Lee, Shin‐Jye</creatorcontrib><creatorcontrib>Huang, Yang</creatorcontrib><creatorcontrib>Chiu, Chien‐Ju</creatorcontrib><title>Air pollution forecasting based on attention‐based LSTM neural network and ensemble learning</title><title>Expert systems</title><description>With air pollution having become a global concern, scientists are committed to working on its amelioration. In the field of air pollution prediction, there have been good results in experimental research so far, but few studies have integrated weather forecast information and the properties of air pollution drift. In this work, we propose a novel wind‐sensitive attention mechanism with a long short‐term memory (LSTM) neural network model to predict the air pollution ‐ PM2.5 concentrations by considering the influence of wind direction and speed on the changes of spatial–temporal PM2.5 concentrations in neighbouring areas. Preliminary predictions for PM2.5 are then made by an LSTM neural network regarding neighbouring pollution; these predictions are “paid attention to” and we finally apply an ensemble learning method based on eXtreme Gradient Boosting (XGBoost) to combine the preliminary predictions with weather forecasting to make second phase predictions of PM2.5. The experiment is conducted using PM2.5 data and weather forecast data. Our results illustrate that the proposed method is superior to other methods in predicting PM2.5 concentrations, including multi‐layer perceptron, support vector regression, LSTM neural network, and extreme gradient boosting algorithm.</description><subject>Air pollution</subject><subject>air pollution forecasting</subject><subject>Algorithms</subject><subject>attention mechanism</subject><subject>Ensemble learning</subject><subject>LSTM</subject><subject>Neural networks</subject><subject>Support vector machines</subject><subject>Weather forecasting</subject><subject>Wind direction</subject><subject>Wind effects</subject><subject>XGBoost</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFY3PsGAOyH1TuYvWZZSf6DiohV04zCd3EhqmtSZhNqdj-Az-iSmxrV3c-Dc754Lh5BzBiPWzRV-hN2IxZKxAzJgQiUR8FQckgHESkVCx3BMTkJYAQDTWg3Iy7jwdFOXZdsUdUXz2qOzoSmqV7q0ATPambZpsNqvvz-_enM2X9zTCltvy06abe3fqK0yilXA9bJEWqL1VRdySo5yWwY8-9MhebyeLia30ezh5m4ynkWOS8EiwZlwqXWKJ8tYWMh46hxoqVKNWmeZtGmiGQDqPJE5aM5SkDoVDkAqjTkfkos-d-Pr9xZDY1Z166vupYkF41rFIpYdddlTztcheMzNxhdr63eGgdn3Z_b9md_-Opj18LYocfcPaaZP8-f-5gcxQXNw</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Liu, Duen‐Ren</creator><creator>Lee, Shin‐Jye</creator><creator>Huang, Yang</creator><creator>Chiu, Chien‐Ju</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1180-0866</orcidid></search><sort><creationdate>202006</creationdate><title>Air pollution forecasting based on attention‐based LSTM neural network and ensemble learning</title><author>Liu, Duen‐Ren ; Lee, Shin‐Jye ; Huang, Yang ; Chiu, Chien‐Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3541-4314c9ac638b24a0d39cc075697e77dd5a987100e7f85f0731905794c00567ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air pollution</topic><topic>air pollution forecasting</topic><topic>Algorithms</topic><topic>attention mechanism</topic><topic>Ensemble learning</topic><topic>LSTM</topic><topic>Neural networks</topic><topic>Support vector machines</topic><topic>Weather forecasting</topic><topic>Wind direction</topic><topic>Wind effects</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Duen‐Ren</creatorcontrib><creatorcontrib>Lee, Shin‐Jye</creatorcontrib><creatorcontrib>Huang, Yang</creatorcontrib><creatorcontrib>Chiu, Chien‐Ju</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Duen‐Ren</au><au>Lee, Shin‐Jye</au><au>Huang, Yang</au><au>Chiu, Chien‐Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air pollution forecasting based on attention‐based LSTM neural network and ensemble learning</atitle><jtitle>Expert systems</jtitle><date>2020-06</date><risdate>2020</risdate><volume>37</volume><issue>3</issue><epage>n/a</epage><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>With air pollution having become a global concern, scientists are committed to working on its amelioration. In the field of air pollution prediction, there have been good results in experimental research so far, but few studies have integrated weather forecast information and the properties of air pollution drift. In this work, we propose a novel wind‐sensitive attention mechanism with a long short‐term memory (LSTM) neural network model to predict the air pollution ‐ PM2.5 concentrations by considering the influence of wind direction and speed on the changes of spatial–temporal PM2.5 concentrations in neighbouring areas. Preliminary predictions for PM2.5 are then made by an LSTM neural network regarding neighbouring pollution; these predictions are “paid attention to” and we finally apply an ensemble learning method based on eXtreme Gradient Boosting (XGBoost) to combine the preliminary predictions with weather forecasting to make second phase predictions of PM2.5. The experiment is conducted using PM2.5 data and weather forecast data. Our results illustrate that the proposed method is superior to other methods in predicting PM2.5 concentrations, including multi‐layer perceptron, support vector regression, LSTM neural network, and extreme gradient boosting algorithm.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.12511</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1180-0866</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4720 |
ispartof | Expert systems, 2020-06, Vol.37 (3), p.n/a |
issn | 0266-4720 1468-0394 |
language | eng |
recordid | cdi_proquest_journals_2413762425 |
source | Wiley-Blackwell Journals; Business Source Complete |
subjects | Air pollution air pollution forecasting Algorithms attention mechanism Ensemble learning LSTM Neural networks Support vector machines Weather forecasting Wind direction Wind effects XGBoost |
title | Air pollution forecasting based on attention‐based LSTM neural network and ensemble learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air%20pollution%20forecasting%20based%20on%20attention%E2%80%90based%20LSTM%20neural%20network%20and%20ensemble%20learning&rft.jtitle=Expert%20systems&rft.au=Liu,%20Duen%E2%80%90Ren&rft.date=2020-06&rft.volume=37&rft.issue=3&rft.epage=n/a&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12511&rft_dat=%3Cproquest_cross%3E2413762425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413762425&rft_id=info:pmid/&rfr_iscdi=true |