Constraining gravity theories with the gravitational stability mass
The measurement of the size of gravitationally bounded structures is an important test of gravity theories. For a given radius different theories can in fact predict a different gravitational stability mass (GSM) necessary to ensure the stability of the structure in presence of dark energy. We compu...
Gespeichert in:
Veröffentlicht in: | Journal of cosmology and astroparticle physics 2020-06, Vol.2020 (6), p.22-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 6 |
container_start_page | 22 |
container_title | Journal of cosmology and astroparticle physics |
container_volume | 2020 |
creator | Vélez, Camilo Santa Romano, Antonio Enea |
description | The measurement of the size of gravitationally bounded structures is an important test of gravity theories. For a given radius different theories can in fact predict a different gravitational stability mass (GSM) necessary to ensure the stability of the structure in presence of dark energy. We compute the GSM of gravitationally bounded structures as a function of the radius for different scalar-tensor theories, including f(R) and generalized Brans-Dicke, and compare the theoretical predictions to observational data. Since the GSM only gives a lower bound, the most stringent constraints come few objects with a mass lower that the one expected in general relativity. The analysis of different observational data sets shows that modified gravity theories (MGT) are compatible with observational data, and in some cases fit the data better than general relativity (GR), but the latter is not in strong tension with the observations. The data presently available does not provide a statistically significant evidence of the need of a modification of GR, with the largest deviation of order 2.6σ for the galaxy cluster NGC5353/4. Due to the limited number of objects not satisfying the GR bound, for these structures it may be important to take into account non gravitational physics or deviations from spherical symmetry. |
doi_str_mv | 10.1088/1475-7516/2020/06/022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2413649356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413649356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-18e06a91403879e800d5eb735dae040364379ac9b63408079beff56c4bac2d233</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKsfQVjwvO7kf3KURa1Q8KLnkN3Ntintbk1Spd_eDS3iaWbevHkMP4TuMTxiUKrCTPJSciwqAgQqEBUQcoFmf_rlv_4a3cS4ASCCUjVDdT0OMQXrBz-silWw3z4di7R2Y_AuFj8-rfN03tjkx8Fui5hs47fZubMx3qKr3m6juzvXOfp8ef6oF-Xy_fWtflqWLcUylVg5EFZjBlRJ7RRAx10jKe-sg0kUjEptW90IykCB1I3rey5a1tiWdITSOXo45e7D-HVwMZnNeAjTP9EQhqd7TbmYXPzkasMYY3C92Qe_s-FoMJjMy2QWJrMwmZcBYSZe9BdEGF2Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413649356</pqid></control><display><type>article</type><title>Constraining gravity theories with the gravitational stability mass</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vélez, Camilo Santa ; Romano, Antonio Enea</creator><creatorcontrib>Vélez, Camilo Santa ; Romano, Antonio Enea</creatorcontrib><description>The measurement of the size of gravitationally bounded structures is an important test of gravity theories. For a given radius different theories can in fact predict a different gravitational stability mass (GSM) necessary to ensure the stability of the structure in presence of dark energy. We compute the GSM of gravitationally bounded structures as a function of the radius for different scalar-tensor theories, including f(R) and generalized Brans-Dicke, and compare the theoretical predictions to observational data. Since the GSM only gives a lower bound, the most stringent constraints come few objects with a mass lower that the one expected in general relativity. The analysis of different observational data sets shows that modified gravity theories (MGT) are compatible with observational data, and in some cases fit the data better than general relativity (GR), but the latter is not in strong tension with the observations. The data presently available does not provide a statistically significant evidence of the need of a modification of GR, with the largest deviation of order 2.6σ for the galaxy cluster NGC5353/4. Due to the limited number of objects not satisfying the GR bound, for these structures it may be important to take into account non gravitational physics or deviations from spherical symmetry.</description><identifier>ISSN: 1475-7516</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2020/06/022</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Dark energy ; Galactic clusters ; Galaxies ; Gravitation theory ; Gravity ; Lower bounds ; Relativity ; Structural stability ; Tensors ; Theory of relativity</subject><ispartof>Journal of cosmology and astroparticle physics, 2020-06, Vol.2020 (6), p.22-22</ispartof><rights>Copyright IOP Publishing Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-18e06a91403879e800d5eb735dae040364379ac9b63408079beff56c4bac2d233</citedby><cites>FETCH-LOGICAL-c317t-18e06a91403879e800d5eb735dae040364379ac9b63408079beff56c4bac2d233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vélez, Camilo Santa</creatorcontrib><creatorcontrib>Romano, Antonio Enea</creatorcontrib><title>Constraining gravity theories with the gravitational stability mass</title><title>Journal of cosmology and astroparticle physics</title><description>The measurement of the size of gravitationally bounded structures is an important test of gravity theories. For a given radius different theories can in fact predict a different gravitational stability mass (GSM) necessary to ensure the stability of the structure in presence of dark energy. We compute the GSM of gravitationally bounded structures as a function of the radius for different scalar-tensor theories, including f(R) and generalized Brans-Dicke, and compare the theoretical predictions to observational data. Since the GSM only gives a lower bound, the most stringent constraints come few objects with a mass lower that the one expected in general relativity. The analysis of different observational data sets shows that modified gravity theories (MGT) are compatible with observational data, and in some cases fit the data better than general relativity (GR), but the latter is not in strong tension with the observations. The data presently available does not provide a statistically significant evidence of the need of a modification of GR, with the largest deviation of order 2.6σ for the galaxy cluster NGC5353/4. Due to the limited number of objects not satisfying the GR bound, for these structures it may be important to take into account non gravitational physics or deviations from spherical symmetry.</description><subject>Dark energy</subject><subject>Galactic clusters</subject><subject>Galaxies</subject><subject>Gravitation theory</subject><subject>Gravity</subject><subject>Lower bounds</subject><subject>Relativity</subject><subject>Structural stability</subject><subject>Tensors</subject><subject>Theory of relativity</subject><issn>1475-7516</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWKsfQVjwvO7kf3KURa1Q8KLnkN3Ntintbk1Spd_eDS3iaWbevHkMP4TuMTxiUKrCTPJSciwqAgQqEBUQcoFmf_rlv_4a3cS4ASCCUjVDdT0OMQXrBz-silWw3z4di7R2Y_AuFj8-rfN03tjkx8Fui5hs47fZubMx3qKr3m6juzvXOfp8ef6oF-Xy_fWtflqWLcUylVg5EFZjBlRJ7RRAx10jKe-sg0kUjEptW90IykCB1I3rey5a1tiWdITSOXo45e7D-HVwMZnNeAjTP9EQhqd7TbmYXPzkasMYY3C92Qe_s-FoMJjMy2QWJrMwmZcBYSZe9BdEGF2Z</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Vélez, Camilo Santa</creator><creator>Romano, Antonio Enea</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>Constraining gravity theories with the gravitational stability mass</title><author>Vélez, Camilo Santa ; Romano, Antonio Enea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-18e06a91403879e800d5eb735dae040364379ac9b63408079beff56c4bac2d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dark energy</topic><topic>Galactic clusters</topic><topic>Galaxies</topic><topic>Gravitation theory</topic><topic>Gravity</topic><topic>Lower bounds</topic><topic>Relativity</topic><topic>Structural stability</topic><topic>Tensors</topic><topic>Theory of relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vélez, Camilo Santa</creatorcontrib><creatorcontrib>Romano, Antonio Enea</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vélez, Camilo Santa</au><au>Romano, Antonio Enea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining gravity theories with the gravitational stability mass</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>2020</volume><issue>6</issue><spage>22</spage><epage>22</epage><pages>22-22</pages><issn>1475-7516</issn><eissn>1475-7516</eissn><abstract>The measurement of the size of gravitationally bounded structures is an important test of gravity theories. For a given radius different theories can in fact predict a different gravitational stability mass (GSM) necessary to ensure the stability of the structure in presence of dark energy. We compute the GSM of gravitationally bounded structures as a function of the radius for different scalar-tensor theories, including f(R) and generalized Brans-Dicke, and compare the theoretical predictions to observational data. Since the GSM only gives a lower bound, the most stringent constraints come few objects with a mass lower that the one expected in general relativity. The analysis of different observational data sets shows that modified gravity theories (MGT) are compatible with observational data, and in some cases fit the data better than general relativity (GR), but the latter is not in strong tension with the observations. The data presently available does not provide a statistically significant evidence of the need of a modification of GR, with the largest deviation of order 2.6σ for the galaxy cluster NGC5353/4. Due to the limited number of objects not satisfying the GR bound, for these structures it may be important to take into account non gravitational physics or deviations from spherical symmetry.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2020/06/022</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-7516 |
ispartof | Journal of cosmology and astroparticle physics, 2020-06, Vol.2020 (6), p.22-22 |
issn | 1475-7516 1475-7516 |
language | eng |
recordid | cdi_proquest_journals_2413649356 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Dark energy Galactic clusters Galaxies Gravitation theory Gravity Lower bounds Relativity Structural stability Tensors Theory of relativity |
title | Constraining gravity theories with the gravitational stability mass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20gravity%20theories%20with%20the%20gravitational%20stability%20mass&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=V%C3%A9lez,%20Camilo%20Santa&rft.date=2020-06-01&rft.volume=2020&rft.issue=6&rft.spage=22&rft.epage=22&rft.pages=22-22&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2020/06/022&rft_dat=%3Cproquest_cross%3E2413649356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413649356&rft_id=info:pmid/&rfr_iscdi=true |