Constraining gravity theories with the gravitational stability mass

The measurement of the size of gravitationally bounded structures is an important test of gravity theories. For a given radius different theories can in fact predict a different gravitational stability mass (GSM) necessary to ensure the stability of the structure in presence of dark energy. We compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cosmology and astroparticle physics 2020-06, Vol.2020 (6), p.22-22
Hauptverfasser: Vélez, Camilo Santa, Romano, Antonio Enea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 6
container_start_page 22
container_title Journal of cosmology and astroparticle physics
container_volume 2020
creator Vélez, Camilo Santa
Romano, Antonio Enea
description The measurement of the size of gravitationally bounded structures is an important test of gravity theories. For a given radius different theories can in fact predict a different gravitational stability mass (GSM) necessary to ensure the stability of the structure in presence of dark energy. We compute the GSM of gravitationally bounded structures as a function of the radius for different scalar-tensor theories, including f(R) and generalized Brans-Dicke, and compare the theoretical predictions to observational data. Since the GSM only gives a lower bound, the most stringent constraints come few objects with a mass lower that the one expected in general relativity. The analysis of different observational data sets shows that modified gravity theories (MGT) are compatible with observational data, and in some cases fit the data better than general relativity (GR), but the latter is not in strong tension with the observations. The data presently available does not provide a statistically significant evidence of the need of a modification of GR, with the largest deviation of order 2.6σ for the galaxy cluster NGC5353/4. Due to the limited number of objects not satisfying the GR bound, for these structures it may be important to take into account non gravitational physics or deviations from spherical symmetry.
doi_str_mv 10.1088/1475-7516/2020/06/022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2413649356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413649356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-18e06a91403879e800d5eb735dae040364379ac9b63408079beff56c4bac2d233</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKsfQVjwvO7kf3KURa1Q8KLnkN3Ntintbk1Spd_eDS3iaWbevHkMP4TuMTxiUKrCTPJSciwqAgQqEBUQcoFmf_rlv_4a3cS4ASCCUjVDdT0OMQXrBz-silWw3z4di7R2Y_AuFj8-rfN03tjkx8Fui5hs47fZubMx3qKr3m6juzvXOfp8ef6oF-Xy_fWtflqWLcUylVg5EFZjBlRJ7RRAx10jKe-sg0kUjEptW90IykCB1I3rey5a1tiWdITSOXo45e7D-HVwMZnNeAjTP9EQhqd7TbmYXPzkasMYY3C92Qe_s-FoMJjMy2QWJrMwmZcBYSZe9BdEGF2Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413649356</pqid></control><display><type>article</type><title>Constraining gravity theories with the gravitational stability mass</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vélez, Camilo Santa ; Romano, Antonio Enea</creator><creatorcontrib>Vélez, Camilo Santa ; Romano, Antonio Enea</creatorcontrib><description>The measurement of the size of gravitationally bounded structures is an important test of gravity theories. For a given radius different theories can in fact predict a different gravitational stability mass (GSM) necessary to ensure the stability of the structure in presence of dark energy. We compute the GSM of gravitationally bounded structures as a function of the radius for different scalar-tensor theories, including f(R) and generalized Brans-Dicke, and compare the theoretical predictions to observational data. Since the GSM only gives a lower bound, the most stringent constraints come few objects with a mass lower that the one expected in general relativity. The analysis of different observational data sets shows that modified gravity theories (MGT) are compatible with observational data, and in some cases fit the data better than general relativity (GR), but the latter is not in strong tension with the observations. The data presently available does not provide a statistically significant evidence of the need of a modification of GR, with the largest deviation of order 2.6σ for the galaxy cluster NGC5353/4. Due to the limited number of objects not satisfying the GR bound, for these structures it may be important to take into account non gravitational physics or deviations from spherical symmetry.</description><identifier>ISSN: 1475-7516</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2020/06/022</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Dark energy ; Galactic clusters ; Galaxies ; Gravitation theory ; Gravity ; Lower bounds ; Relativity ; Structural stability ; Tensors ; Theory of relativity</subject><ispartof>Journal of cosmology and astroparticle physics, 2020-06, Vol.2020 (6), p.22-22</ispartof><rights>Copyright IOP Publishing Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-18e06a91403879e800d5eb735dae040364379ac9b63408079beff56c4bac2d233</citedby><cites>FETCH-LOGICAL-c317t-18e06a91403879e800d5eb735dae040364379ac9b63408079beff56c4bac2d233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vélez, Camilo Santa</creatorcontrib><creatorcontrib>Romano, Antonio Enea</creatorcontrib><title>Constraining gravity theories with the gravitational stability mass</title><title>Journal of cosmology and astroparticle physics</title><description>The measurement of the size of gravitationally bounded structures is an important test of gravity theories. For a given radius different theories can in fact predict a different gravitational stability mass (GSM) necessary to ensure the stability of the structure in presence of dark energy. We compute the GSM of gravitationally bounded structures as a function of the radius for different scalar-tensor theories, including f(R) and generalized Brans-Dicke, and compare the theoretical predictions to observational data. Since the GSM only gives a lower bound, the most stringent constraints come few objects with a mass lower that the one expected in general relativity. The analysis of different observational data sets shows that modified gravity theories (MGT) are compatible with observational data, and in some cases fit the data better than general relativity (GR), but the latter is not in strong tension with the observations. The data presently available does not provide a statistically significant evidence of the need of a modification of GR, with the largest deviation of order 2.6σ for the galaxy cluster NGC5353/4. Due to the limited number of objects not satisfying the GR bound, for these structures it may be important to take into account non gravitational physics or deviations from spherical symmetry.</description><subject>Dark energy</subject><subject>Galactic clusters</subject><subject>Galaxies</subject><subject>Gravitation theory</subject><subject>Gravity</subject><subject>Lower bounds</subject><subject>Relativity</subject><subject>Structural stability</subject><subject>Tensors</subject><subject>Theory of relativity</subject><issn>1475-7516</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWKsfQVjwvO7kf3KURa1Q8KLnkN3Ntintbk1Spd_eDS3iaWbevHkMP4TuMTxiUKrCTPJSciwqAgQqEBUQcoFmf_rlv_4a3cS4ASCCUjVDdT0OMQXrBz-silWw3z4di7R2Y_AuFj8-rfN03tjkx8Fui5hs47fZubMx3qKr3m6juzvXOfp8ef6oF-Xy_fWtflqWLcUylVg5EFZjBlRJ7RRAx10jKe-sg0kUjEptW90IykCB1I3rey5a1tiWdITSOXo45e7D-HVwMZnNeAjTP9EQhqd7TbmYXPzkasMYY3C92Qe_s-FoMJjMy2QWJrMwmZcBYSZe9BdEGF2Z</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Vélez, Camilo Santa</creator><creator>Romano, Antonio Enea</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>Constraining gravity theories with the gravitational stability mass</title><author>Vélez, Camilo Santa ; Romano, Antonio Enea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-18e06a91403879e800d5eb735dae040364379ac9b63408079beff56c4bac2d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dark energy</topic><topic>Galactic clusters</topic><topic>Galaxies</topic><topic>Gravitation theory</topic><topic>Gravity</topic><topic>Lower bounds</topic><topic>Relativity</topic><topic>Structural stability</topic><topic>Tensors</topic><topic>Theory of relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vélez, Camilo Santa</creatorcontrib><creatorcontrib>Romano, Antonio Enea</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vélez, Camilo Santa</au><au>Romano, Antonio Enea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining gravity theories with the gravitational stability mass</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>2020</volume><issue>6</issue><spage>22</spage><epage>22</epage><pages>22-22</pages><issn>1475-7516</issn><eissn>1475-7516</eissn><abstract>The measurement of the size of gravitationally bounded structures is an important test of gravity theories. For a given radius different theories can in fact predict a different gravitational stability mass (GSM) necessary to ensure the stability of the structure in presence of dark energy. We compute the GSM of gravitationally bounded structures as a function of the radius for different scalar-tensor theories, including f(R) and generalized Brans-Dicke, and compare the theoretical predictions to observational data. Since the GSM only gives a lower bound, the most stringent constraints come few objects with a mass lower that the one expected in general relativity. The analysis of different observational data sets shows that modified gravity theories (MGT) are compatible with observational data, and in some cases fit the data better than general relativity (GR), but the latter is not in strong tension with the observations. The data presently available does not provide a statistically significant evidence of the need of a modification of GR, with the largest deviation of order 2.6σ for the galaxy cluster NGC5353/4. Due to the limited number of objects not satisfying the GR bound, for these structures it may be important to take into account non gravitational physics or deviations from spherical symmetry.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2020/06/022</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1475-7516
ispartof Journal of cosmology and astroparticle physics, 2020-06, Vol.2020 (6), p.22-22
issn 1475-7516
1475-7516
language eng
recordid cdi_proquest_journals_2413649356
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Dark energy
Galactic clusters
Galaxies
Gravitation theory
Gravity
Lower bounds
Relativity
Structural stability
Tensors
Theory of relativity
title Constraining gravity theories with the gravitational stability mass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20gravity%20theories%20with%20the%20gravitational%20stability%20mass&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=V%C3%A9lez,%20Camilo%20Santa&rft.date=2020-06-01&rft.volume=2020&rft.issue=6&rft.spage=22&rft.epage=22&rft.pages=22-22&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2020/06/022&rft_dat=%3Cproquest_cross%3E2413649356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413649356&rft_id=info:pmid/&rfr_iscdi=true