The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration
Purpose The purpose of this paper is to focus on the performance of three typical nonlinear least-squares estimation algorithms in atmospheric density model calibration. Design/methodology/approach The error of Jacchia-Roberts atmospheric density model is expressed as an objective function about tem...
Gespeichert in:
Veröffentlicht in: | Aircraft engineering 2020-06, Vol.92 (7), p.993-1000 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1000 |
---|---|
container_issue | 7 |
container_start_page | 993 |
container_title | Aircraft engineering |
container_volume | 92 |
creator | Zhang, Houzhe Gu, Defeng Duan, Xiaojun Shao, Kai Wei, Chunbo |
description | Purpose
The purpose of this paper is to focus on the performance of three typical nonlinear least-squares estimation algorithms in atmospheric density model calibration.
Design/methodology/approach
The error of Jacchia-Roberts atmospheric density model is expressed as an objective function about temperature parameters. The estimation of parameter corrections is a typical nonlinear least-squares problem. Three algorithms for nonlinear least-squares problems, Gauss–Newton (G-N), damped Gauss–Newton (damped G-N) and Levenberg–Marquardt (L-M) algorithms, are adopted to estimate temperature parameter corrections of Jacchia-Roberts for model calibration.
Findings
The results show that G-N algorithm is not convergent at some sampling points. The main reason is the nonlinear relationship between Jacchia-Roberts and its temperature parameters. Damped G-N and L-M algorithms are both convergent at all sampling points. G-N, damped G-N and L-M algorithms reduce the root mean square error of Jacchia-Roberts from 20.4% to 9.3%, 9.4% and 9.4%, respectively. The average iterations of G-N, damped G-N and L-M algorithms are 3.0, 2.8 and 2.9, respectively.
Practical implications
This study is expected to provide a guidance for the selection of nonlinear least-squares estimation methods in atmospheric density model calibration.
Originality/value
The study analyses the performance of three typical nonlinear least-squares estimation methods in the calibration of atmospheric density model. The non-convergent phenomenon of G-N algorithm is discovered and explained. Damped G-N and L-M algorithms are more suitable for the nonlinear least-squares problems in model calibration than G-N algorithm and the first two algorithms have slightly fewer iterations. |
doi_str_mv | 10.1108/AEAT-06-2019-0133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2413632645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413632645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-46c9014743fe85513b9fb9b16b7084e441c53bc6f6d4429b7f60bf0bf9691b8d3</originalsourceid><addsrcrecordid>eNptkU1LxDAQhosouK7-AG8Bz9FMk6bpcVn8ggUv6zkkaeJmSZtu0j3sv7d1vQhCYDLwPvPxTlHcA3kEIOJp9bzaYsJxSaDBBCi9KBZQVwKzEujl_GcCC8HK6-Im5z0hwCtCF4Xf7ixSwxC8UaOPPYoO9bEPvrcqoWBVHnE-HFWyGdk8-u6sUuErJj_uuoz8lI1dzMPOJm9Qa_vsxxPqYmsDMip4nX6Y2-LKqZDt3W9cFp8vz9v1G958vL6vVxtsKLARM24aAqxm1FlRVUB143SjgeuaCGYZA1NRbbjjLWNlo2vHiXbTa3gDWrR0WTyc6w4pHo7TzHIfj6mfWsqSAeW05KyaVHBWmRRzTtbJIU3LpZMEImdH5eyoJFzOjsrZ0YkhZ8Z2NqnQ_ov8OQL9BrEpeSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413632645</pqid></control><display><type>article</type><title>The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration</title><source>Emerald Insight</source><creator>Zhang, Houzhe ; Gu, Defeng ; Duan, Xiaojun ; Shao, Kai ; Wei, Chunbo</creator><creatorcontrib>Zhang, Houzhe ; Gu, Defeng ; Duan, Xiaojun ; Shao, Kai ; Wei, Chunbo</creatorcontrib><description>Purpose
The purpose of this paper is to focus on the performance of three typical nonlinear least-squares estimation algorithms in atmospheric density model calibration.
Design/methodology/approach
The error of Jacchia-Roberts atmospheric density model is expressed as an objective function about temperature parameters. The estimation of parameter corrections is a typical nonlinear least-squares problem. Three algorithms for nonlinear least-squares problems, Gauss–Newton (G-N), damped Gauss–Newton (damped G-N) and Levenberg–Marquardt (L-M) algorithms, are adopted to estimate temperature parameter corrections of Jacchia-Roberts for model calibration.
Findings
The results show that G-N algorithm is not convergent at some sampling points. The main reason is the nonlinear relationship between Jacchia-Roberts and its temperature parameters. Damped G-N and L-M algorithms are both convergent at all sampling points. G-N, damped G-N and L-M algorithms reduce the root mean square error of Jacchia-Roberts from 20.4% to 9.3%, 9.4% and 9.4%, respectively. The average iterations of G-N, damped G-N and L-M algorithms are 3.0, 2.8 and 2.9, respectively.
Practical implications
This study is expected to provide a guidance for the selection of nonlinear least-squares estimation methods in atmospheric density model calibration.
Originality/value
The study analyses the performance of three typical nonlinear least-squares estimation methods in the calibration of atmospheric density model. The non-convergent phenomenon of G-N algorithm is discovered and explained. Damped G-N and L-M algorithms are more suitable for the nonlinear least-squares problems in model calibration than G-N algorithm and the first two algorithms have slightly fewer iterations.</description><identifier>ISSN: 1748-8842</identifier><identifier>EISSN: 1758-4213</identifier><identifier>EISSN: 1748-8842</identifier><identifier>DOI: 10.1108/AEAT-06-2019-0133</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Accuracy ; Algorithms ; Altitude ; Approximation ; Atmosphere ; Atmospheric density ; Calibration ; Convergence ; Efficiency ; Least squares method ; Mathematical models ; Parameter estimation ; Sampling ; Satellites</subject><ispartof>Aircraft engineering, 2020-06, Vol.92 (7), p.993-1000</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-46c9014743fe85513b9fb9b16b7084e441c53bc6f6d4429b7f60bf0bf9691b8d3</citedby><cites>FETCH-LOGICAL-c314t-46c9014743fe85513b9fb9b16b7084e441c53bc6f6d4429b7f60bf0bf9691b8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,966,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Houzhe</creatorcontrib><creatorcontrib>Gu, Defeng</creatorcontrib><creatorcontrib>Duan, Xiaojun</creatorcontrib><creatorcontrib>Shao, Kai</creatorcontrib><creatorcontrib>Wei, Chunbo</creatorcontrib><title>The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration</title><title>Aircraft engineering</title><description>Purpose
The purpose of this paper is to focus on the performance of three typical nonlinear least-squares estimation algorithms in atmospheric density model calibration.
Design/methodology/approach
The error of Jacchia-Roberts atmospheric density model is expressed as an objective function about temperature parameters. The estimation of parameter corrections is a typical nonlinear least-squares problem. Three algorithms for nonlinear least-squares problems, Gauss–Newton (G-N), damped Gauss–Newton (damped G-N) and Levenberg–Marquardt (L-M) algorithms, are adopted to estimate temperature parameter corrections of Jacchia-Roberts for model calibration.
Findings
The results show that G-N algorithm is not convergent at some sampling points. The main reason is the nonlinear relationship between Jacchia-Roberts and its temperature parameters. Damped G-N and L-M algorithms are both convergent at all sampling points. G-N, damped G-N and L-M algorithms reduce the root mean square error of Jacchia-Roberts from 20.4% to 9.3%, 9.4% and 9.4%, respectively. The average iterations of G-N, damped G-N and L-M algorithms are 3.0, 2.8 and 2.9, respectively.
Practical implications
This study is expected to provide a guidance for the selection of nonlinear least-squares estimation methods in atmospheric density model calibration.
Originality/value
The study analyses the performance of three typical nonlinear least-squares estimation methods in the calibration of atmospheric density model. The non-convergent phenomenon of G-N algorithm is discovered and explained. Damped G-N and L-M algorithms are more suitable for the nonlinear least-squares problems in model calibration than G-N algorithm and the first two algorithms have slightly fewer iterations.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Approximation</subject><subject>Atmosphere</subject><subject>Atmospheric density</subject><subject>Calibration</subject><subject>Convergence</subject><subject>Efficiency</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Sampling</subject><subject>Satellites</subject><issn>1748-8842</issn><issn>1758-4213</issn><issn>1748-8842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkU1LxDAQhosouK7-AG8Bz9FMk6bpcVn8ggUv6zkkaeJmSZtu0j3sv7d1vQhCYDLwPvPxTlHcA3kEIOJp9bzaYsJxSaDBBCi9KBZQVwKzEujl_GcCC8HK6-Im5z0hwCtCF4Xf7ixSwxC8UaOPPYoO9bEPvrcqoWBVHnE-HFWyGdk8-u6sUuErJj_uuoz8lI1dzMPOJm9Qa_vsxxPqYmsDMip4nX6Y2-LKqZDt3W9cFp8vz9v1G958vL6vVxtsKLARM24aAqxm1FlRVUB143SjgeuaCGYZA1NRbbjjLWNlo2vHiXbTa3gDWrR0WTyc6w4pHo7TzHIfj6mfWsqSAeW05KyaVHBWmRRzTtbJIU3LpZMEImdH5eyoJFzOjsrZ0YkhZ8Z2NqnQ_ov8OQL9BrEpeSI</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>Zhang, Houzhe</creator><creator>Gu, Defeng</creator><creator>Duan, Xiaojun</creator><creator>Shao, Kai</creator><creator>Wei, Chunbo</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7RQ</scope><scope>7TB</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0F</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200616</creationdate><title>The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration</title><author>Zhang, Houzhe ; Gu, Defeng ; Duan, Xiaojun ; Shao, Kai ; Wei, Chunbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-46c9014743fe85513b9fb9b16b7084e441c53bc6f6d4429b7f60bf0bf9691b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Approximation</topic><topic>Atmosphere</topic><topic>Atmospheric density</topic><topic>Calibration</topic><topic>Convergence</topic><topic>Efficiency</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Sampling</topic><topic>Satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Houzhe</creatorcontrib><creatorcontrib>Gu, Defeng</creatorcontrib><creatorcontrib>Duan, Xiaojun</creatorcontrib><creatorcontrib>Shao, Kai</creatorcontrib><creatorcontrib>Wei, Chunbo</creatorcontrib><collection>CrossRef</collection><collection>Career & Technical Education Database</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Aircraft engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Houzhe</au><au>Gu, Defeng</au><au>Duan, Xiaojun</au><au>Shao, Kai</au><au>Wei, Chunbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration</atitle><jtitle>Aircraft engineering</jtitle><date>2020-06-16</date><risdate>2020</risdate><volume>92</volume><issue>7</issue><spage>993</spage><epage>1000</epage><pages>993-1000</pages><issn>1748-8842</issn><eissn>1758-4213</eissn><eissn>1748-8842</eissn><abstract>Purpose
The purpose of this paper is to focus on the performance of three typical nonlinear least-squares estimation algorithms in atmospheric density model calibration.
Design/methodology/approach
The error of Jacchia-Roberts atmospheric density model is expressed as an objective function about temperature parameters. The estimation of parameter corrections is a typical nonlinear least-squares problem. Three algorithms for nonlinear least-squares problems, Gauss–Newton (G-N), damped Gauss–Newton (damped G-N) and Levenberg–Marquardt (L-M) algorithms, are adopted to estimate temperature parameter corrections of Jacchia-Roberts for model calibration.
Findings
The results show that G-N algorithm is not convergent at some sampling points. The main reason is the nonlinear relationship between Jacchia-Roberts and its temperature parameters. Damped G-N and L-M algorithms are both convergent at all sampling points. G-N, damped G-N and L-M algorithms reduce the root mean square error of Jacchia-Roberts from 20.4% to 9.3%, 9.4% and 9.4%, respectively. The average iterations of G-N, damped G-N and L-M algorithms are 3.0, 2.8 and 2.9, respectively.
Practical implications
This study is expected to provide a guidance for the selection of nonlinear least-squares estimation methods in atmospheric density model calibration.
Originality/value
The study analyses the performance of three typical nonlinear least-squares estimation methods in the calibration of atmospheric density model. The non-convergent phenomenon of G-N algorithm is discovered and explained. Damped G-N and L-M algorithms are more suitable for the nonlinear least-squares problems in model calibration than G-N algorithm and the first two algorithms have slightly fewer iterations.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/AEAT-06-2019-0133</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-8842 |
ispartof | Aircraft engineering, 2020-06, Vol.92 (7), p.993-1000 |
issn | 1748-8842 1758-4213 1748-8842 |
language | eng |
recordid | cdi_proquest_journals_2413632645 |
source | Emerald Insight |
subjects | Accuracy Algorithms Altitude Approximation Atmosphere Atmospheric density Calibration Convergence Efficiency Least squares method Mathematical models Parameter estimation Sampling Satellites |
title | The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20nonlinear%20least-squares%20estimation%20algorithms%20in%20atmospheric%20density%20model%20calibration&rft.jtitle=Aircraft%20engineering&rft.au=Zhang,%20Houzhe&rft.date=2020-06-16&rft.volume=92&rft.issue=7&rft.spage=993&rft.epage=1000&rft.pages=993-1000&rft.issn=1748-8842&rft.eissn=1758-4213&rft_id=info:doi/10.1108/AEAT-06-2019-0133&rft_dat=%3Cproquest_cross%3E2413632645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413632645&rft_id=info:pmid/&rfr_iscdi=true |