The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration

Purpose The purpose of this paper is to focus on the performance of three typical nonlinear least-squares estimation algorithms in atmospheric density model calibration. Design/methodology/approach The error of Jacchia-Roberts atmospheric density model is expressed as an objective function about tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aircraft engineering 2020-06, Vol.92 (7), p.993-1000
Hauptverfasser: Zhang, Houzhe, Gu, Defeng, Duan, Xiaojun, Shao, Kai, Wei, Chunbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1000
container_issue 7
container_start_page 993
container_title Aircraft engineering
container_volume 92
creator Zhang, Houzhe
Gu, Defeng
Duan, Xiaojun
Shao, Kai
Wei, Chunbo
description Purpose The purpose of this paper is to focus on the performance of three typical nonlinear least-squares estimation algorithms in atmospheric density model calibration. Design/methodology/approach The error of Jacchia-Roberts atmospheric density model is expressed as an objective function about temperature parameters. The estimation of parameter corrections is a typical nonlinear least-squares problem. Three algorithms for nonlinear least-squares problems, Gauss–Newton (G-N), damped Gauss–Newton (damped G-N) and Levenberg–Marquardt (L-M) algorithms, are adopted to estimate temperature parameter corrections of Jacchia-Roberts for model calibration. Findings The results show that G-N algorithm is not convergent at some sampling points. The main reason is the nonlinear relationship between Jacchia-Roberts and its temperature parameters. Damped G-N and L-M algorithms are both convergent at all sampling points. G-N, damped G-N and L-M algorithms reduce the root mean square error of Jacchia-Roberts from 20.4% to 9.3%, 9.4% and 9.4%, respectively. The average iterations of G-N, damped G-N and L-M algorithms are 3.0, 2.8 and 2.9, respectively. Practical implications This study is expected to provide a guidance for the selection of nonlinear least-squares estimation methods in atmospheric density model calibration. Originality/value The study analyses the performance of three typical nonlinear least-squares estimation methods in the calibration of atmospheric density model. The non-convergent phenomenon of G-N algorithm is discovered and explained. Damped G-N and L-M algorithms are more suitable for the nonlinear least-squares problems in model calibration than G-N algorithm and the first two algorithms have slightly fewer iterations.
doi_str_mv 10.1108/AEAT-06-2019-0133
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2413632645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413632645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-46c9014743fe85513b9fb9b16b7084e441c53bc6f6d4429b7f60bf0bf9691b8d3</originalsourceid><addsrcrecordid>eNptkU1LxDAQhosouK7-AG8Bz9FMk6bpcVn8ggUv6zkkaeJmSZtu0j3sv7d1vQhCYDLwPvPxTlHcA3kEIOJp9bzaYsJxSaDBBCi9KBZQVwKzEujl_GcCC8HK6-Im5z0hwCtCF4Xf7ixSwxC8UaOPPYoO9bEPvrcqoWBVHnE-HFWyGdk8-u6sUuErJj_uuoz8lI1dzMPOJm9Qa_vsxxPqYmsDMip4nX6Y2-LKqZDt3W9cFp8vz9v1G958vL6vVxtsKLARM24aAqxm1FlRVUB143SjgeuaCGYZA1NRbbjjLWNlo2vHiXbTa3gDWrR0WTyc6w4pHo7TzHIfj6mfWsqSAeW05KyaVHBWmRRzTtbJIU3LpZMEImdH5eyoJFzOjsrZ0YkhZ8Z2NqnQ_ov8OQL9BrEpeSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413632645</pqid></control><display><type>article</type><title>The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration</title><source>Emerald Insight</source><creator>Zhang, Houzhe ; Gu, Defeng ; Duan, Xiaojun ; Shao, Kai ; Wei, Chunbo</creator><creatorcontrib>Zhang, Houzhe ; Gu, Defeng ; Duan, Xiaojun ; Shao, Kai ; Wei, Chunbo</creatorcontrib><description>Purpose The purpose of this paper is to focus on the performance of three typical nonlinear least-squares estimation algorithms in atmospheric density model calibration. Design/methodology/approach The error of Jacchia-Roberts atmospheric density model is expressed as an objective function about temperature parameters. The estimation of parameter corrections is a typical nonlinear least-squares problem. Three algorithms for nonlinear least-squares problems, Gauss–Newton (G-N), damped Gauss–Newton (damped G-N) and Levenberg–Marquardt (L-M) algorithms, are adopted to estimate temperature parameter corrections of Jacchia-Roberts for model calibration. Findings The results show that G-N algorithm is not convergent at some sampling points. The main reason is the nonlinear relationship between Jacchia-Roberts and its temperature parameters. Damped G-N and L-M algorithms are both convergent at all sampling points. G-N, damped G-N and L-M algorithms reduce the root mean square error of Jacchia-Roberts from 20.4% to 9.3%, 9.4% and 9.4%, respectively. The average iterations of G-N, damped G-N and L-M algorithms are 3.0, 2.8 and 2.9, respectively. Practical implications This study is expected to provide a guidance for the selection of nonlinear least-squares estimation methods in atmospheric density model calibration. Originality/value The study analyses the performance of three typical nonlinear least-squares estimation methods in the calibration of atmospheric density model. The non-convergent phenomenon of G-N algorithm is discovered and explained. Damped G-N and L-M algorithms are more suitable for the nonlinear least-squares problems in model calibration than G-N algorithm and the first two algorithms have slightly fewer iterations.</description><identifier>ISSN: 1748-8842</identifier><identifier>EISSN: 1758-4213</identifier><identifier>EISSN: 1748-8842</identifier><identifier>DOI: 10.1108/AEAT-06-2019-0133</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Accuracy ; Algorithms ; Altitude ; Approximation ; Atmosphere ; Atmospheric density ; Calibration ; Convergence ; Efficiency ; Least squares method ; Mathematical models ; Parameter estimation ; Sampling ; Satellites</subject><ispartof>Aircraft engineering, 2020-06, Vol.92 (7), p.993-1000</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-46c9014743fe85513b9fb9b16b7084e441c53bc6f6d4429b7f60bf0bf9691b8d3</citedby><cites>FETCH-LOGICAL-c314t-46c9014743fe85513b9fb9b16b7084e441c53bc6f6d4429b7f60bf0bf9691b8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,966,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Houzhe</creatorcontrib><creatorcontrib>Gu, Defeng</creatorcontrib><creatorcontrib>Duan, Xiaojun</creatorcontrib><creatorcontrib>Shao, Kai</creatorcontrib><creatorcontrib>Wei, Chunbo</creatorcontrib><title>The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration</title><title>Aircraft engineering</title><description>Purpose The purpose of this paper is to focus on the performance of three typical nonlinear least-squares estimation algorithms in atmospheric density model calibration. Design/methodology/approach The error of Jacchia-Roberts atmospheric density model is expressed as an objective function about temperature parameters. The estimation of parameter corrections is a typical nonlinear least-squares problem. Three algorithms for nonlinear least-squares problems, Gauss–Newton (G-N), damped Gauss–Newton (damped G-N) and Levenberg–Marquardt (L-M) algorithms, are adopted to estimate temperature parameter corrections of Jacchia-Roberts for model calibration. Findings The results show that G-N algorithm is not convergent at some sampling points. The main reason is the nonlinear relationship between Jacchia-Roberts and its temperature parameters. Damped G-N and L-M algorithms are both convergent at all sampling points. G-N, damped G-N and L-M algorithms reduce the root mean square error of Jacchia-Roberts from 20.4% to 9.3%, 9.4% and 9.4%, respectively. The average iterations of G-N, damped G-N and L-M algorithms are 3.0, 2.8 and 2.9, respectively. Practical implications This study is expected to provide a guidance for the selection of nonlinear least-squares estimation methods in atmospheric density model calibration. Originality/value The study analyses the performance of three typical nonlinear least-squares estimation methods in the calibration of atmospheric density model. The non-convergent phenomenon of G-N algorithm is discovered and explained. Damped G-N and L-M algorithms are more suitable for the nonlinear least-squares problems in model calibration than G-N algorithm and the first two algorithms have slightly fewer iterations.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Approximation</subject><subject>Atmosphere</subject><subject>Atmospheric density</subject><subject>Calibration</subject><subject>Convergence</subject><subject>Efficiency</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Sampling</subject><subject>Satellites</subject><issn>1748-8842</issn><issn>1758-4213</issn><issn>1748-8842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkU1LxDAQhosouK7-AG8Bz9FMk6bpcVn8ggUv6zkkaeJmSZtu0j3sv7d1vQhCYDLwPvPxTlHcA3kEIOJp9bzaYsJxSaDBBCi9KBZQVwKzEujl_GcCC8HK6-Im5z0hwCtCF4Xf7ixSwxC8UaOPPYoO9bEPvrcqoWBVHnE-HFWyGdk8-u6sUuErJj_uuoz8lI1dzMPOJm9Qa_vsxxPqYmsDMip4nX6Y2-LKqZDt3W9cFp8vz9v1G958vL6vVxtsKLARM24aAqxm1FlRVUB143SjgeuaCGYZA1NRbbjjLWNlo2vHiXbTa3gDWrR0WTyc6w4pHo7TzHIfj6mfWsqSAeW05KyaVHBWmRRzTtbJIU3LpZMEImdH5eyoJFzOjsrZ0YkhZ8Z2NqnQ_ov8OQL9BrEpeSI</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>Zhang, Houzhe</creator><creator>Gu, Defeng</creator><creator>Duan, Xiaojun</creator><creator>Shao, Kai</creator><creator>Wei, Chunbo</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7RQ</scope><scope>7TB</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0F</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200616</creationdate><title>The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration</title><author>Zhang, Houzhe ; Gu, Defeng ; Duan, Xiaojun ; Shao, Kai ; Wei, Chunbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-46c9014743fe85513b9fb9b16b7084e441c53bc6f6d4429b7f60bf0bf9691b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Approximation</topic><topic>Atmosphere</topic><topic>Atmospheric density</topic><topic>Calibration</topic><topic>Convergence</topic><topic>Efficiency</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Sampling</topic><topic>Satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Houzhe</creatorcontrib><creatorcontrib>Gu, Defeng</creatorcontrib><creatorcontrib>Duan, Xiaojun</creatorcontrib><creatorcontrib>Shao, Kai</creatorcontrib><creatorcontrib>Wei, Chunbo</creatorcontrib><collection>CrossRef</collection><collection>Career &amp; Technical Education Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Aircraft engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Houzhe</au><au>Gu, Defeng</au><au>Duan, Xiaojun</au><au>Shao, Kai</au><au>Wei, Chunbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration</atitle><jtitle>Aircraft engineering</jtitle><date>2020-06-16</date><risdate>2020</risdate><volume>92</volume><issue>7</issue><spage>993</spage><epage>1000</epage><pages>993-1000</pages><issn>1748-8842</issn><eissn>1758-4213</eissn><eissn>1748-8842</eissn><abstract>Purpose The purpose of this paper is to focus on the performance of three typical nonlinear least-squares estimation algorithms in atmospheric density model calibration. Design/methodology/approach The error of Jacchia-Roberts atmospheric density model is expressed as an objective function about temperature parameters. The estimation of parameter corrections is a typical nonlinear least-squares problem. Three algorithms for nonlinear least-squares problems, Gauss–Newton (G-N), damped Gauss–Newton (damped G-N) and Levenberg–Marquardt (L-M) algorithms, are adopted to estimate temperature parameter corrections of Jacchia-Roberts for model calibration. Findings The results show that G-N algorithm is not convergent at some sampling points. The main reason is the nonlinear relationship between Jacchia-Roberts and its temperature parameters. Damped G-N and L-M algorithms are both convergent at all sampling points. G-N, damped G-N and L-M algorithms reduce the root mean square error of Jacchia-Roberts from 20.4% to 9.3%, 9.4% and 9.4%, respectively. The average iterations of G-N, damped G-N and L-M algorithms are 3.0, 2.8 and 2.9, respectively. Practical implications This study is expected to provide a guidance for the selection of nonlinear least-squares estimation methods in atmospheric density model calibration. Originality/value The study analyses the performance of three typical nonlinear least-squares estimation methods in the calibration of atmospheric density model. The non-convergent phenomenon of G-N algorithm is discovered and explained. Damped G-N and L-M algorithms are more suitable for the nonlinear least-squares problems in model calibration than G-N algorithm and the first two algorithms have slightly fewer iterations.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/AEAT-06-2019-0133</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-8842
ispartof Aircraft engineering, 2020-06, Vol.92 (7), p.993-1000
issn 1748-8842
1758-4213
1748-8842
language eng
recordid cdi_proquest_journals_2413632645
source Emerald Insight
subjects Accuracy
Algorithms
Altitude
Approximation
Atmosphere
Atmospheric density
Calibration
Convergence
Efficiency
Least squares method
Mathematical models
Parameter estimation
Sampling
Satellites
title The application of nonlinear least-squares estimation algorithms in atmospheric density model calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20nonlinear%20least-squares%20estimation%20algorithms%20in%20atmospheric%20density%20model%20calibration&rft.jtitle=Aircraft%20engineering&rft.au=Zhang,%20Houzhe&rft.date=2020-06-16&rft.volume=92&rft.issue=7&rft.spage=993&rft.epage=1000&rft.pages=993-1000&rft.issn=1748-8842&rft.eissn=1758-4213&rft_id=info:doi/10.1108/AEAT-06-2019-0133&rft_dat=%3Cproquest_cross%3E2413632645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413632645&rft_id=info:pmid/&rfr_iscdi=true