High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite
This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porph...
Gespeichert in:
Veröffentlicht in: | Journal of earth science (Wuhan, China) China), 2020, Vol.31 (3), p.523-535 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 535 |
---|---|
container_issue | 3 |
container_start_page | 523 |
container_title | Journal of earth science (Wuhan, China) |
container_volume | 31 |
creator | Padyar, Fariba Rahgoshay, Mohammad Tarantola, Alexander Caumon, Marie-Camille Pourmoafi, Seyed Mohammad |
description | This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+ chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 °C and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low-
T
and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO
2
in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO
2
of −56.6 °C, and significant amounts of H
2
. Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectroscopy. High amounts of H
2
in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO
2
in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ
34
S values for sulfide minerals in galena of sphalerite bearing veins vary between −9.8‰ and −1.0‰, and the δ
34
S values calculated for H
2
S are between −7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala. |
doi_str_mv | 10.1007/s12583-019-1023-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2413580264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413580264</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1416-76aa4b3703f4a4ad9be6cdbc93d49d93815f1d4c9c44e69d91b8912fef9de0f93</originalsourceid><addsrcrecordid>eNpNkdFKIzEUhgdxQal9AO8C3jpuTpJmJt5p7dpCxQV3wbshnZzYyDQZkym-gtc-kA-zT7LRCnpucvjz8f8H_qI4BnoGlFY_E7BJzUsKqgTKeCn3ikOoZVUCwP1-3mUlSlFX9wfFOKVHmoezqobqsHibu4c1sXP27-XV3jEyDd64wQWfyEVKoXV6QEOe3bAmd_1adxjdgMR5stSD7jSZ9fkL40Z35FInJNob8jti68I2kRvMDLnCPiQ3nJIp-iFmYRG1PyeLTd-5Vu-ybIgk--T4zQecxQ-ra_SYXPp-VrDfLjkqfljdJRx_vqPi76_Zn-m8XN5eL6YXy7IHAbKspNZixSvKrdBCG7VC2ZpVq7gRyihew8SCEa1qhUCZFVjVCphFqwxSq_ioONn59jE8bTENzWPYRp8jGyaAT2rKpMgU21Gpj84_YPyigDbvVTW7qppcVfNeVSP5f-Y4iu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413580264</pqid></control><display><type>article</type><title>High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Padyar, Fariba ; Rahgoshay, Mohammad ; Tarantola, Alexander ; Caumon, Marie-Camille ; Pourmoafi, Seyed Mohammad</creator><creatorcontrib>Padyar, Fariba ; Rahgoshay, Mohammad ; Tarantola, Alexander ; Caumon, Marie-Camille ; Pourmoafi, Seyed Mohammad</creatorcontrib><description>This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+ chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 °C and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low-
T
and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO
2
in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO
2
of −56.6 °C, and significant amounts of H
2
. Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectroscopy. High amounts of H
2
in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO
2
in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ
34
S values for sulfide minerals in galena of sphalerite bearing veins vary between −9.8‰ and −1.0‰, and the δ
34
S values calculated for H
2
S are between −7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala.</description><identifier>ISSN: 1674-487X</identifier><identifier>EISSN: 1867-111X</identifier><identifier>DOI: 10.1007/s12583-019-1023-6</identifier><language>eng</language><publisher>Wuhan: China University of Geosciences</publisher><subject>Analytical methods ; Ascent ; Base metal ; Biogeosciences ; Calcite ; Carbon dioxide ; Carbonates ; Cenozoic ; Chalcopyrite ; Degassing ; Diffusion ; Earth and Environmental Science ; Earth Sciences ; Fluid inclusions ; Fluids ; Galena ; Geochemistry ; Geology ; Geotechnical Engineering & Applied Earth Sciences ; Haematite ; Heavy metals ; Hematite ; Hydrocarbons ; Hydrogen sulfide ; Iron ; Lava ; Magma ; Mathematical analysis ; Melt temperature ; Metals ; Mineral Deposits ; Mineralization ; Noble metals ; Porphyry copper ; Quartz ; Raman spectroscopy ; Rock ; Rocks ; Salinity ; Salinity effects ; Sodium chloride ; Spectroscopy ; Spectrum analysis ; Sphalerite ; Sulfur ; Sulphides ; Sulphur ; Ultraviolet radiation ; Vapor phases ; Veins (geology) ; Zincblende ; Zoning</subject><ispartof>Journal of earth science (Wuhan, China), 2020, Vol.31 (3), p.523-535</ispartof><rights>China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2020</rights><rights>China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1416-76aa4b3703f4a4ad9be6cdbc93d49d93815f1d4c9c44e69d91b8912fef9de0f93</cites><orcidid>0000-0002-8236-9404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12583-019-1023-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12583-019-1023-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Padyar, Fariba</creatorcontrib><creatorcontrib>Rahgoshay, Mohammad</creatorcontrib><creatorcontrib>Tarantola, Alexander</creatorcontrib><creatorcontrib>Caumon, Marie-Camille</creatorcontrib><creatorcontrib>Pourmoafi, Seyed Mohammad</creatorcontrib><title>High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite</title><title>Journal of earth science (Wuhan, China)</title><addtitle>J. Earth Sci</addtitle><description>This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+ chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 °C and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low-
T
and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO
2
in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO
2
of −56.6 °C, and significant amounts of H
2
. Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectroscopy. High amounts of H
2
in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO
2
in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ
34
S values for sulfide minerals in galena of sphalerite bearing veins vary between −9.8‰ and −1.0‰, and the δ
34
S values calculated for H
2
S are between −7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala.</description><subject>Analytical methods</subject><subject>Ascent</subject><subject>Base metal</subject><subject>Biogeosciences</subject><subject>Calcite</subject><subject>Carbon dioxide</subject><subject>Carbonates</subject><subject>Cenozoic</subject><subject>Chalcopyrite</subject><subject>Degassing</subject><subject>Diffusion</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid inclusions</subject><subject>Fluids</subject><subject>Galena</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Haematite</subject><subject>Heavy metals</subject><subject>Hematite</subject><subject>Hydrocarbons</subject><subject>Hydrogen sulfide</subject><subject>Iron</subject><subject>Lava</subject><subject>Magma</subject><subject>Mathematical analysis</subject><subject>Melt temperature</subject><subject>Metals</subject><subject>Mineral Deposits</subject><subject>Mineralization</subject><subject>Noble metals</subject><subject>Porphyry copper</subject><subject>Quartz</subject><subject>Raman spectroscopy</subject><subject>Rock</subject><subject>Rocks</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sodium chloride</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Sphalerite</subject><subject>Sulfur</subject><subject>Sulphides</subject><subject>Sulphur</subject><subject>Ultraviolet radiation</subject><subject>Vapor phases</subject><subject>Veins (geology)</subject><subject>Zincblende</subject><subject>Zoning</subject><issn>1674-487X</issn><issn>1867-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkdFKIzEUhgdxQal9AO8C3jpuTpJmJt5p7dpCxQV3wbshnZzYyDQZkym-gtc-kA-zT7LRCnpucvjz8f8H_qI4BnoGlFY_E7BJzUsKqgTKeCn3ikOoZVUCwP1-3mUlSlFX9wfFOKVHmoezqobqsHibu4c1sXP27-XV3jEyDd64wQWfyEVKoXV6QEOe3bAmd_1adxjdgMR5stSD7jSZ9fkL40Z35FInJNob8jti68I2kRvMDLnCPiQ3nJIp-iFmYRG1PyeLTd-5Vu-ybIgk--T4zQecxQ-ra_SYXPp-VrDfLjkqfljdJRx_vqPi76_Zn-m8XN5eL6YXy7IHAbKspNZixSvKrdBCG7VC2ZpVq7gRyihew8SCEa1qhUCZFVjVCphFqwxSq_ioONn59jE8bTENzWPYRp8jGyaAT2rKpMgU21Gpj84_YPyigDbvVTW7qppcVfNeVSP5f-Y4iu0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Padyar, Fariba</creator><creator>Rahgoshay, Mohammad</creator><creator>Tarantola, Alexander</creator><creator>Caumon, Marie-Camille</creator><creator>Pourmoafi, Seyed Mohammad</creator><general>China University of Geosciences</general><general>Springer Nature B.V</general><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8236-9404</orcidid></search><sort><creationdate>2020</creationdate><title>High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite</title><author>Padyar, Fariba ; Rahgoshay, Mohammad ; Tarantola, Alexander ; Caumon, Marie-Camille ; Pourmoafi, Seyed Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1416-76aa4b3703f4a4ad9be6cdbc93d49d93815f1d4c9c44e69d91b8912fef9de0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical methods</topic><topic>Ascent</topic><topic>Base metal</topic><topic>Biogeosciences</topic><topic>Calcite</topic><topic>Carbon dioxide</topic><topic>Carbonates</topic><topic>Cenozoic</topic><topic>Chalcopyrite</topic><topic>Degassing</topic><topic>Diffusion</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid inclusions</topic><topic>Fluids</topic><topic>Galena</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Haematite</topic><topic>Heavy metals</topic><topic>Hematite</topic><topic>Hydrocarbons</topic><topic>Hydrogen sulfide</topic><topic>Iron</topic><topic>Lava</topic><topic>Magma</topic><topic>Mathematical analysis</topic><topic>Melt temperature</topic><topic>Metals</topic><topic>Mineral Deposits</topic><topic>Mineralization</topic><topic>Noble metals</topic><topic>Porphyry copper</topic><topic>Quartz</topic><topic>Raman spectroscopy</topic><topic>Rock</topic><topic>Rocks</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sodium chloride</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Sphalerite</topic><topic>Sulfur</topic><topic>Sulphides</topic><topic>Sulphur</topic><topic>Ultraviolet radiation</topic><topic>Vapor phases</topic><topic>Veins (geology)</topic><topic>Zincblende</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padyar, Fariba</creatorcontrib><creatorcontrib>Rahgoshay, Mohammad</creatorcontrib><creatorcontrib>Tarantola, Alexander</creatorcontrib><creatorcontrib>Caumon, Marie-Camille</creatorcontrib><creatorcontrib>Pourmoafi, Seyed Mohammad</creatorcontrib><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of earth science (Wuhan, China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padyar, Fariba</au><au>Rahgoshay, Mohammad</au><au>Tarantola, Alexander</au><au>Caumon, Marie-Camille</au><au>Pourmoafi, Seyed Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite</atitle><jtitle>Journal of earth science (Wuhan, China)</jtitle><stitle>J. Earth Sci</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>523</spage><epage>535</epage><pages>523-535</pages><issn>1674-487X</issn><eissn>1867-111X</eissn><abstract>This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+ chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 °C and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low-
T
and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO
2
in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO
2
of −56.6 °C, and significant amounts of H
2
. Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectroscopy. High amounts of H
2
in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO
2
in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ
34
S values for sulfide minerals in galena of sphalerite bearing veins vary between −9.8‰ and −1.0‰, and the δ
34
S values calculated for H
2
S are between −7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala.</abstract><cop>Wuhan</cop><pub>China University of Geosciences</pub><doi>10.1007/s12583-019-1023-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8236-9404</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-487X |
ispartof | Journal of earth science (Wuhan, China), 2020, Vol.31 (3), p.523-535 |
issn | 1674-487X 1867-111X |
language | eng |
recordid | cdi_proquest_journals_2413580264 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Analytical methods Ascent Base metal Biogeosciences Calcite Carbon dioxide Carbonates Cenozoic Chalcopyrite Degassing Diffusion Earth and Environmental Science Earth Sciences Fluid inclusions Fluids Galena Geochemistry Geology Geotechnical Engineering & Applied Earth Sciences Haematite Heavy metals Hematite Hydrocarbons Hydrogen sulfide Iron Lava Magma Mathematical analysis Melt temperature Metals Mineral Deposits Mineralization Noble metals Porphyry copper Quartz Raman spectroscopy Rock Rocks Salinity Salinity effects Sodium chloride Spectroscopy Spectrum analysis Sphalerite Sulfur Sulphides Sulphur Ultraviolet radiation Vapor phases Veins (geology) Zincblende Zoning |
title | High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20fH2%E2%88%92fS2%20Conditions%20Associated%20with%20Sphalerite%20in%20Latala%20Epithermal%20Base%20and%20Precious%20Metal%20Deposit,%20Central%20Iran:%20Implications%20for%20the%20Composition%20and%20Genesis%20Conditions%20of%20Sphalerite&rft.jtitle=Journal%20of%20earth%20science%20(Wuhan,%20China)&rft.au=Padyar,%20Fariba&rft.date=2020&rft.volume=31&rft.issue=3&rft.spage=523&rft.epage=535&rft.pages=523-535&rft.issn=1674-487X&rft.eissn=1867-111X&rft_id=info:doi/10.1007/s12583-019-1023-6&rft_dat=%3Cproquest_sprin%3E2413580264%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413580264&rft_id=info:pmid/&rfr_iscdi=true |