High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite

This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of earth science (Wuhan, China) China), 2020, Vol.31 (3), p.523-535
Hauptverfasser: Padyar, Fariba, Rahgoshay, Mohammad, Tarantola, Alexander, Caumon, Marie-Camille, Pourmoafi, Seyed Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 535
container_issue 3
container_start_page 523
container_title Journal of earth science (Wuhan, China)
container_volume 31
creator Padyar, Fariba
Rahgoshay, Mohammad
Tarantola, Alexander
Caumon, Marie-Camille
Pourmoafi, Seyed Mohammad
description This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+ chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 °C and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low- T and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO 2 in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO 2 of −56.6 °C, and significant amounts of H 2 . Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectroscopy. High amounts of H 2 in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO 2 in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ 34 S values for sulfide minerals in galena of sphalerite bearing veins vary between −9.8‰ and −1.0‰, and the δ 34 S values calculated for H 2 S are between −7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala.
doi_str_mv 10.1007/s12583-019-1023-6
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2413580264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413580264</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1416-76aa4b3703f4a4ad9be6cdbc93d49d93815f1d4c9c44e69d91b8912fef9de0f93</originalsourceid><addsrcrecordid>eNpNkdFKIzEUhgdxQal9AO8C3jpuTpJmJt5p7dpCxQV3wbshnZzYyDQZkym-gtc-kA-zT7LRCnpucvjz8f8H_qI4BnoGlFY_E7BJzUsKqgTKeCn3ikOoZVUCwP1-3mUlSlFX9wfFOKVHmoezqobqsHibu4c1sXP27-XV3jEyDd64wQWfyEVKoXV6QEOe3bAmd_1adxjdgMR5stSD7jSZ9fkL40Z35FInJNob8jti68I2kRvMDLnCPiQ3nJIp-iFmYRG1PyeLTd-5Vu-ybIgk--T4zQecxQ-ra_SYXPp-VrDfLjkqfljdJRx_vqPi76_Zn-m8XN5eL6YXy7IHAbKspNZixSvKrdBCG7VC2ZpVq7gRyihew8SCEa1qhUCZFVjVCphFqwxSq_ioONn59jE8bTENzWPYRp8jGyaAT2rKpMgU21Gpj84_YPyigDbvVTW7qppcVfNeVSP5f-Y4iu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413580264</pqid></control><display><type>article</type><title>High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Padyar, Fariba ; Rahgoshay, Mohammad ; Tarantola, Alexander ; Caumon, Marie-Camille ; Pourmoafi, Seyed Mohammad</creator><creatorcontrib>Padyar, Fariba ; Rahgoshay, Mohammad ; Tarantola, Alexander ; Caumon, Marie-Camille ; Pourmoafi, Seyed Mohammad</creatorcontrib><description>This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+ chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 °C and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low- T and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO 2 in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO 2 of −56.6 °C, and significant amounts of H 2 . Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectroscopy. High amounts of H 2 in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO 2 in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ 34 S values for sulfide minerals in galena of sphalerite bearing veins vary between −9.8‰ and −1.0‰, and the δ 34 S values calculated for H 2 S are between −7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala.</description><identifier>ISSN: 1674-487X</identifier><identifier>EISSN: 1867-111X</identifier><identifier>DOI: 10.1007/s12583-019-1023-6</identifier><language>eng</language><publisher>Wuhan: China University of Geosciences</publisher><subject>Analytical methods ; Ascent ; Base metal ; Biogeosciences ; Calcite ; Carbon dioxide ; Carbonates ; Cenozoic ; Chalcopyrite ; Degassing ; Diffusion ; Earth and Environmental Science ; Earth Sciences ; Fluid inclusions ; Fluids ; Galena ; Geochemistry ; Geology ; Geotechnical Engineering &amp; Applied Earth Sciences ; Haematite ; Heavy metals ; Hematite ; Hydrocarbons ; Hydrogen sulfide ; Iron ; Lava ; Magma ; Mathematical analysis ; Melt temperature ; Metals ; Mineral Deposits ; Mineralization ; Noble metals ; Porphyry copper ; Quartz ; Raman spectroscopy ; Rock ; Rocks ; Salinity ; Salinity effects ; Sodium chloride ; Spectroscopy ; Spectrum analysis ; Sphalerite ; Sulfur ; Sulphides ; Sulphur ; Ultraviolet radiation ; Vapor phases ; Veins (geology) ; Zincblende ; Zoning</subject><ispartof>Journal of earth science (Wuhan, China), 2020, Vol.31 (3), p.523-535</ispartof><rights>China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2020</rights><rights>China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1416-76aa4b3703f4a4ad9be6cdbc93d49d93815f1d4c9c44e69d91b8912fef9de0f93</cites><orcidid>0000-0002-8236-9404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12583-019-1023-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12583-019-1023-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Padyar, Fariba</creatorcontrib><creatorcontrib>Rahgoshay, Mohammad</creatorcontrib><creatorcontrib>Tarantola, Alexander</creatorcontrib><creatorcontrib>Caumon, Marie-Camille</creatorcontrib><creatorcontrib>Pourmoafi, Seyed Mohammad</creatorcontrib><title>High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite</title><title>Journal of earth science (Wuhan, China)</title><addtitle>J. Earth Sci</addtitle><description>This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+ chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 °C and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low- T and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO 2 in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO 2 of −56.6 °C, and significant amounts of H 2 . Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectroscopy. High amounts of H 2 in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO 2 in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ 34 S values for sulfide minerals in galena of sphalerite bearing veins vary between −9.8‰ and −1.0‰, and the δ 34 S values calculated for H 2 S are between −7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala.</description><subject>Analytical methods</subject><subject>Ascent</subject><subject>Base metal</subject><subject>Biogeosciences</subject><subject>Calcite</subject><subject>Carbon dioxide</subject><subject>Carbonates</subject><subject>Cenozoic</subject><subject>Chalcopyrite</subject><subject>Degassing</subject><subject>Diffusion</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid inclusions</subject><subject>Fluids</subject><subject>Galena</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Haematite</subject><subject>Heavy metals</subject><subject>Hematite</subject><subject>Hydrocarbons</subject><subject>Hydrogen sulfide</subject><subject>Iron</subject><subject>Lava</subject><subject>Magma</subject><subject>Mathematical analysis</subject><subject>Melt temperature</subject><subject>Metals</subject><subject>Mineral Deposits</subject><subject>Mineralization</subject><subject>Noble metals</subject><subject>Porphyry copper</subject><subject>Quartz</subject><subject>Raman spectroscopy</subject><subject>Rock</subject><subject>Rocks</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sodium chloride</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Sphalerite</subject><subject>Sulfur</subject><subject>Sulphides</subject><subject>Sulphur</subject><subject>Ultraviolet radiation</subject><subject>Vapor phases</subject><subject>Veins (geology)</subject><subject>Zincblende</subject><subject>Zoning</subject><issn>1674-487X</issn><issn>1867-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkdFKIzEUhgdxQal9AO8C3jpuTpJmJt5p7dpCxQV3wbshnZzYyDQZkym-gtc-kA-zT7LRCnpucvjz8f8H_qI4BnoGlFY_E7BJzUsKqgTKeCn3ikOoZVUCwP1-3mUlSlFX9wfFOKVHmoezqobqsHibu4c1sXP27-XV3jEyDd64wQWfyEVKoXV6QEOe3bAmd_1adxjdgMR5stSD7jSZ9fkL40Z35FInJNob8jti68I2kRvMDLnCPiQ3nJIp-iFmYRG1PyeLTd-5Vu-ybIgk--T4zQecxQ-ra_SYXPp-VrDfLjkqfljdJRx_vqPi76_Zn-m8XN5eL6YXy7IHAbKspNZixSvKrdBCG7VC2ZpVq7gRyihew8SCEa1qhUCZFVjVCphFqwxSq_ioONn59jE8bTENzWPYRp8jGyaAT2rKpMgU21Gpj84_YPyigDbvVTW7qppcVfNeVSP5f-Y4iu0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Padyar, Fariba</creator><creator>Rahgoshay, Mohammad</creator><creator>Tarantola, Alexander</creator><creator>Caumon, Marie-Camille</creator><creator>Pourmoafi, Seyed Mohammad</creator><general>China University of Geosciences</general><general>Springer Nature B.V</general><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8236-9404</orcidid></search><sort><creationdate>2020</creationdate><title>High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite</title><author>Padyar, Fariba ; Rahgoshay, Mohammad ; Tarantola, Alexander ; Caumon, Marie-Camille ; Pourmoafi, Seyed Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1416-76aa4b3703f4a4ad9be6cdbc93d49d93815f1d4c9c44e69d91b8912fef9de0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical methods</topic><topic>Ascent</topic><topic>Base metal</topic><topic>Biogeosciences</topic><topic>Calcite</topic><topic>Carbon dioxide</topic><topic>Carbonates</topic><topic>Cenozoic</topic><topic>Chalcopyrite</topic><topic>Degassing</topic><topic>Diffusion</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid inclusions</topic><topic>Fluids</topic><topic>Galena</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Haematite</topic><topic>Heavy metals</topic><topic>Hematite</topic><topic>Hydrocarbons</topic><topic>Hydrogen sulfide</topic><topic>Iron</topic><topic>Lava</topic><topic>Magma</topic><topic>Mathematical analysis</topic><topic>Melt temperature</topic><topic>Metals</topic><topic>Mineral Deposits</topic><topic>Mineralization</topic><topic>Noble metals</topic><topic>Porphyry copper</topic><topic>Quartz</topic><topic>Raman spectroscopy</topic><topic>Rock</topic><topic>Rocks</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sodium chloride</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Sphalerite</topic><topic>Sulfur</topic><topic>Sulphides</topic><topic>Sulphur</topic><topic>Ultraviolet radiation</topic><topic>Vapor phases</topic><topic>Veins (geology)</topic><topic>Zincblende</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padyar, Fariba</creatorcontrib><creatorcontrib>Rahgoshay, Mohammad</creatorcontrib><creatorcontrib>Tarantola, Alexander</creatorcontrib><creatorcontrib>Caumon, Marie-Camille</creatorcontrib><creatorcontrib>Pourmoafi, Seyed Mohammad</creatorcontrib><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of earth science (Wuhan, China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padyar, Fariba</au><au>Rahgoshay, Mohammad</au><au>Tarantola, Alexander</au><au>Caumon, Marie-Camille</au><au>Pourmoafi, Seyed Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite</atitle><jtitle>Journal of earth science (Wuhan, China)</jtitle><stitle>J. Earth Sci</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>523</spage><epage>535</epage><pages>523-535</pages><issn>1674-487X</issn><eissn>1867-111X</eissn><abstract>This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+ chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 °C and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low- T and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO 2 in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO 2 of −56.6 °C, and significant amounts of H 2 . Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectroscopy. High amounts of H 2 in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO 2 in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ 34 S values for sulfide minerals in galena of sphalerite bearing veins vary between −9.8‰ and −1.0‰, and the δ 34 S values calculated for H 2 S are between −7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala.</abstract><cop>Wuhan</cop><pub>China University of Geosciences</pub><doi>10.1007/s12583-019-1023-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8236-9404</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1674-487X
ispartof Journal of earth science (Wuhan, China), 2020, Vol.31 (3), p.523-535
issn 1674-487X
1867-111X
language eng
recordid cdi_proquest_journals_2413580264
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Analytical methods
Ascent
Base metal
Biogeosciences
Calcite
Carbon dioxide
Carbonates
Cenozoic
Chalcopyrite
Degassing
Diffusion
Earth and Environmental Science
Earth Sciences
Fluid inclusions
Fluids
Galena
Geochemistry
Geology
Geotechnical Engineering & Applied Earth Sciences
Haematite
Heavy metals
Hematite
Hydrocarbons
Hydrogen sulfide
Iron
Lava
Magma
Mathematical analysis
Melt temperature
Metals
Mineral Deposits
Mineralization
Noble metals
Porphyry copper
Quartz
Raman spectroscopy
Rock
Rocks
Salinity
Salinity effects
Sodium chloride
Spectroscopy
Spectrum analysis
Sphalerite
Sulfur
Sulphides
Sulphur
Ultraviolet radiation
Vapor phases
Veins (geology)
Zincblende
Zoning
title High fH2−fS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20fH2%E2%88%92fS2%20Conditions%20Associated%20with%20Sphalerite%20in%20Latala%20Epithermal%20Base%20and%20Precious%20Metal%20Deposit,%20Central%20Iran:%20Implications%20for%20the%20Composition%20and%20Genesis%20Conditions%20of%20Sphalerite&rft.jtitle=Journal%20of%20earth%20science%20(Wuhan,%20China)&rft.au=Padyar,%20Fariba&rft.date=2020&rft.volume=31&rft.issue=3&rft.spage=523&rft.epage=535&rft.pages=523-535&rft.issn=1674-487X&rft.eissn=1867-111X&rft_id=info:doi/10.1007/s12583-019-1023-6&rft_dat=%3Cproquest_sprin%3E2413580264%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413580264&rft_id=info:pmid/&rfr_iscdi=true