Thermo‐catalytic conversion of greenhouse gases (CO2 and CH4) to CO‐rich hydrogen by CeO2 modified calcium iron oxide supported nickel catalyst
SUMMARY In this study, the thermo‐catalytic conversion of two principal greenhouse gases (methane and carbon dioxide) to carbon monoxide (CO)‐rich hydrogen (H2) is investigated over cerium oxide (CeO2) promoted calcium ferrite supported nickel (Ni/CaFe2O4) catalyst. The CeO2 promoted Ni/CaFe2O4 cata...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2020-06, Vol.44 (8), p.6325-6337 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6337 |
---|---|
container_issue | 8 |
container_start_page | 6325 |
container_title | International journal of energy research |
container_volume | 44 |
creator | Hossain, Mohammed Anwar Ayodele, Bamidele V. Ong, Huei R. Mustapa, Siti I. Cheng, Chin K. Khan, Maksudur R. |
description | SUMMARY
In this study, the thermo‐catalytic conversion of two principal greenhouse gases (methane and carbon dioxide) to carbon monoxide (CO)‐rich hydrogen (H2) is investigated over cerium oxide (CeO2) promoted calcium ferrite supported nickel (Ni/CaFe2O4) catalyst. The CeO2 promoted Ni/CaFe2O4 catalyst was prepared using wet‐impregnation technique. To ascertain the physicochemical properties, the as‐prepared catalyst was characterized using various instrument techniques. The characterization of the catalysts reveals that CeO2‐Ni/CaFe2O4 possesses suitable physicochemical properties for the conversion of methane (CH4) and carbon dioxide (CO2) to CO‐rich H2. The thermo‐catalytic reaction revealed that the CeO2 promoted Ni/CaFe2O4 catalyst displayed a higher CH4 and CO2 conversions of 90.04% and 91.2%, respectively, at a temperature of 1073 K compared to the unpromoted catalyst. The highest H2 and CO yields of 78% and 76%, respectively, were obtained over the CeO2‐Ni/CaFe2O4 at 1073 K and CH4/CO2 ratio of 1. The CeO2 promoted Ni/CaFe2O4 catalyst remained stable throughout the 30 hours time on stream (TOS) while that of the unpromoted Ni/CaFe2O4 catalyst sharply decreased after 22 hours TOS. The characterization of the used catalysts confirms the evidence of carbon depositions on the unpromoted Ni/CaFe2O4 which is solely responsible for its deactivation. Whereas, there was a slightly gasifiable carbon deposited on the CeO2 promoted Ni/CaFe2O4 catalyst which could be ascribed to the interaction effect of the CeO2 promoter on the Ni/CaFe2O4 catalyst.
The study investigates the thermo‐catalytic conversion of two principal greenhouse gases (methane and carbon dioxide) to carbon monoxide (CO)‐rich hydrogen (H2) over cerium oxide promoted calcium ferrite supported nickel catalyst. The effect of the CeO2 promoter on the activity and stability of the Ni/CaFe2O4 catalyst was examined. |
doi_str_mv | 10.1002/er.5346 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2413347513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413347513</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2566-e15a4139aa02d168dac2f86f2856ef56ec054220bf90c917ce9e680857e73f2e3</originalsourceid><addsrcrecordid>eNotUMFKxDAQDaLguoq_EPCiSNckbdP2KGV1hYUFWWFvJZtO26xtsyat2pufIPiHfokp62HmHd6bNzMPoUtKZpQQdgdmFvoBP0ITSpLEozTYHKMJ8bnvJSTanKIza3eEOI5GE_SzrsA0-vfrW4pO1EOnJJa6fQdjlW6xLnBpANpK9xZwKSxYfJ2uGBZtjtNFcIM7jdOVGzdKVrgacqNLaPF2wCk4WaNzVSjIsRS1VH2DlRldP1UO2Pb7vTadI1slX6HGhwtsd45OClFbuPjHKXp5mK_ThbdcPT6l90uvZCHnHtBQBNRPhCAspzzOhWRFzAsWhxwKV5KEAWNkWyREumclJMBjEocRRH7BwJ-iq4Pv3ui3HmyX7XRvWrcyY87YD6LQ9Sm6Pag-VA1DtjeqEWbIKMnGuDMw2Rh3Nn8ewf8DiEx2aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413347513</pqid></control><display><type>article</type><title>Thermo‐catalytic conversion of greenhouse gases (CO2 and CH4) to CO‐rich hydrogen by CeO2 modified calcium iron oxide supported nickel catalyst</title><source>Wiley Online Library All Journals</source><creator>Hossain, Mohammed Anwar ; Ayodele, Bamidele V. ; Ong, Huei R. ; Mustapa, Siti I. ; Cheng, Chin K. ; Khan, Maksudur R.</creator><creatorcontrib>Hossain, Mohammed Anwar ; Ayodele, Bamidele V. ; Ong, Huei R. ; Mustapa, Siti I. ; Cheng, Chin K. ; Khan, Maksudur R.</creatorcontrib><description>SUMMARY
In this study, the thermo‐catalytic conversion of two principal greenhouse gases (methane and carbon dioxide) to carbon monoxide (CO)‐rich hydrogen (H2) is investigated over cerium oxide (CeO2) promoted calcium ferrite supported nickel (Ni/CaFe2O4) catalyst. The CeO2 promoted Ni/CaFe2O4 catalyst was prepared using wet‐impregnation technique. To ascertain the physicochemical properties, the as‐prepared catalyst was characterized using various instrument techniques. The characterization of the catalysts reveals that CeO2‐Ni/CaFe2O4 possesses suitable physicochemical properties for the conversion of methane (CH4) and carbon dioxide (CO2) to CO‐rich H2. The thermo‐catalytic reaction revealed that the CeO2 promoted Ni/CaFe2O4 catalyst displayed a higher CH4 and CO2 conversions of 90.04% and 91.2%, respectively, at a temperature of 1073 K compared to the unpromoted catalyst. The highest H2 and CO yields of 78% and 76%, respectively, were obtained over the CeO2‐Ni/CaFe2O4 at 1073 K and CH4/CO2 ratio of 1. The CeO2 promoted Ni/CaFe2O4 catalyst remained stable throughout the 30 hours time on stream (TOS) while that of the unpromoted Ni/CaFe2O4 catalyst sharply decreased after 22 hours TOS. The characterization of the used catalysts confirms the evidence of carbon depositions on the unpromoted Ni/CaFe2O4 which is solely responsible for its deactivation. Whereas, there was a slightly gasifiable carbon deposited on the CeO2 promoted Ni/CaFe2O4 catalyst which could be ascribed to the interaction effect of the CeO2 promoter on the Ni/CaFe2O4 catalyst.
The study investigates the thermo‐catalytic conversion of two principal greenhouse gases (methane and carbon dioxide) to carbon monoxide (CO)‐rich hydrogen (H2) over cerium oxide promoted calcium ferrite supported nickel catalyst. The effect of the CeO2 promoter on the activity and stability of the Ni/CaFe2O4 catalyst was examined.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.5346</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Calcium ; Calcium ferrites ; calcium iron oxide ; Calcium oxide ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Catalytic converters ; ceria promoter ; Cerium ; Cerium oxides ; Conversion ; Deactivation ; Gases ; Gasification ; Greenhouse effect ; Greenhouse gases ; hydrogen ; Iron oxides ; Lime ; Methane ; methane dry reforming ; Nickel ; Physicochemical processes ; Physicochemical properties ; syngas</subject><ispartof>International journal of energy research, 2020-06, Vol.44 (8), p.6325-6337</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7200-3126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.5346$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.5346$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hossain, Mohammed Anwar</creatorcontrib><creatorcontrib>Ayodele, Bamidele V.</creatorcontrib><creatorcontrib>Ong, Huei R.</creatorcontrib><creatorcontrib>Mustapa, Siti I.</creatorcontrib><creatorcontrib>Cheng, Chin K.</creatorcontrib><creatorcontrib>Khan, Maksudur R.</creatorcontrib><title>Thermo‐catalytic conversion of greenhouse gases (CO2 and CH4) to CO‐rich hydrogen by CeO2 modified calcium iron oxide supported nickel catalyst</title><title>International journal of energy research</title><description>SUMMARY
In this study, the thermo‐catalytic conversion of two principal greenhouse gases (methane and carbon dioxide) to carbon monoxide (CO)‐rich hydrogen (H2) is investigated over cerium oxide (CeO2) promoted calcium ferrite supported nickel (Ni/CaFe2O4) catalyst. The CeO2 promoted Ni/CaFe2O4 catalyst was prepared using wet‐impregnation technique. To ascertain the physicochemical properties, the as‐prepared catalyst was characterized using various instrument techniques. The characterization of the catalysts reveals that CeO2‐Ni/CaFe2O4 possesses suitable physicochemical properties for the conversion of methane (CH4) and carbon dioxide (CO2) to CO‐rich H2. The thermo‐catalytic reaction revealed that the CeO2 promoted Ni/CaFe2O4 catalyst displayed a higher CH4 and CO2 conversions of 90.04% and 91.2%, respectively, at a temperature of 1073 K compared to the unpromoted catalyst. The highest H2 and CO yields of 78% and 76%, respectively, were obtained over the CeO2‐Ni/CaFe2O4 at 1073 K and CH4/CO2 ratio of 1. The CeO2 promoted Ni/CaFe2O4 catalyst remained stable throughout the 30 hours time on stream (TOS) while that of the unpromoted Ni/CaFe2O4 catalyst sharply decreased after 22 hours TOS. The characterization of the used catalysts confirms the evidence of carbon depositions on the unpromoted Ni/CaFe2O4 which is solely responsible for its deactivation. Whereas, there was a slightly gasifiable carbon deposited on the CeO2 promoted Ni/CaFe2O4 catalyst which could be ascribed to the interaction effect of the CeO2 promoter on the Ni/CaFe2O4 catalyst.
The study investigates the thermo‐catalytic conversion of two principal greenhouse gases (methane and carbon dioxide) to carbon monoxide (CO)‐rich hydrogen (H2) over cerium oxide promoted calcium ferrite supported nickel catalyst. The effect of the CeO2 promoter on the activity and stability of the Ni/CaFe2O4 catalyst was examined.</description><subject>Calcium</subject><subject>Calcium ferrites</subject><subject>calcium iron oxide</subject><subject>Calcium oxide</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>ceria promoter</subject><subject>Cerium</subject><subject>Cerium oxides</subject><subject>Conversion</subject><subject>Deactivation</subject><subject>Gases</subject><subject>Gasification</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>hydrogen</subject><subject>Iron oxides</subject><subject>Lime</subject><subject>Methane</subject><subject>methane dry reforming</subject><subject>Nickel</subject><subject>Physicochemical processes</subject><subject>Physicochemical properties</subject><subject>syngas</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotUMFKxDAQDaLguoq_EPCiSNckbdP2KGV1hYUFWWFvJZtO26xtsyat2pufIPiHfokp62HmHd6bNzMPoUtKZpQQdgdmFvoBP0ITSpLEozTYHKMJ8bnvJSTanKIza3eEOI5GE_SzrsA0-vfrW4pO1EOnJJa6fQdjlW6xLnBpANpK9xZwKSxYfJ2uGBZtjtNFcIM7jdOVGzdKVrgacqNLaPF2wCk4WaNzVSjIsRS1VH2DlRldP1UO2Pb7vTadI1slX6HGhwtsd45OClFbuPjHKXp5mK_ThbdcPT6l90uvZCHnHtBQBNRPhCAspzzOhWRFzAsWhxwKV5KEAWNkWyREumclJMBjEocRRH7BwJ-iq4Pv3ui3HmyX7XRvWrcyY87YD6LQ9Sm6Pag-VA1DtjeqEWbIKMnGuDMw2Rh3Nn8ewf8DiEx2aw</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Hossain, Mohammed Anwar</creator><creator>Ayodele, Bamidele V.</creator><creator>Ong, Huei R.</creator><creator>Mustapa, Siti I.</creator><creator>Cheng, Chin K.</creator><creator>Khan, Maksudur R.</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7200-3126</orcidid></search><sort><creationdate>20200625</creationdate><title>Thermo‐catalytic conversion of greenhouse gases (CO2 and CH4) to CO‐rich hydrogen by CeO2 modified calcium iron oxide supported nickel catalyst</title><author>Hossain, Mohammed Anwar ; Ayodele, Bamidele V. ; Ong, Huei R. ; Mustapa, Siti I. ; Cheng, Chin K. ; Khan, Maksudur R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2566-e15a4139aa02d168dac2f86f2856ef56ec054220bf90c917ce9e680857e73f2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calcium</topic><topic>Calcium ferrites</topic><topic>calcium iron oxide</topic><topic>Calcium oxide</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>ceria promoter</topic><topic>Cerium</topic><topic>Cerium oxides</topic><topic>Conversion</topic><topic>Deactivation</topic><topic>Gases</topic><topic>Gasification</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>hydrogen</topic><topic>Iron oxides</topic><topic>Lime</topic><topic>Methane</topic><topic>methane dry reforming</topic><topic>Nickel</topic><topic>Physicochemical processes</topic><topic>Physicochemical properties</topic><topic>syngas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Mohammed Anwar</creatorcontrib><creatorcontrib>Ayodele, Bamidele V.</creatorcontrib><creatorcontrib>Ong, Huei R.</creatorcontrib><creatorcontrib>Mustapa, Siti I.</creatorcontrib><creatorcontrib>Cheng, Chin K.</creatorcontrib><creatorcontrib>Khan, Maksudur R.</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Mohammed Anwar</au><au>Ayodele, Bamidele V.</au><au>Ong, Huei R.</au><au>Mustapa, Siti I.</au><au>Cheng, Chin K.</au><au>Khan, Maksudur R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo‐catalytic conversion of greenhouse gases (CO2 and CH4) to CO‐rich hydrogen by CeO2 modified calcium iron oxide supported nickel catalyst</atitle><jtitle>International journal of energy research</jtitle><date>2020-06-25</date><risdate>2020</risdate><volume>44</volume><issue>8</issue><spage>6325</spage><epage>6337</epage><pages>6325-6337</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>SUMMARY
In this study, the thermo‐catalytic conversion of two principal greenhouse gases (methane and carbon dioxide) to carbon monoxide (CO)‐rich hydrogen (H2) is investigated over cerium oxide (CeO2) promoted calcium ferrite supported nickel (Ni/CaFe2O4) catalyst. The CeO2 promoted Ni/CaFe2O4 catalyst was prepared using wet‐impregnation technique. To ascertain the physicochemical properties, the as‐prepared catalyst was characterized using various instrument techniques. The characterization of the catalysts reveals that CeO2‐Ni/CaFe2O4 possesses suitable physicochemical properties for the conversion of methane (CH4) and carbon dioxide (CO2) to CO‐rich H2. The thermo‐catalytic reaction revealed that the CeO2 promoted Ni/CaFe2O4 catalyst displayed a higher CH4 and CO2 conversions of 90.04% and 91.2%, respectively, at a temperature of 1073 K compared to the unpromoted catalyst. The highest H2 and CO yields of 78% and 76%, respectively, were obtained over the CeO2‐Ni/CaFe2O4 at 1073 K and CH4/CO2 ratio of 1. The CeO2 promoted Ni/CaFe2O4 catalyst remained stable throughout the 30 hours time on stream (TOS) while that of the unpromoted Ni/CaFe2O4 catalyst sharply decreased after 22 hours TOS. The characterization of the used catalysts confirms the evidence of carbon depositions on the unpromoted Ni/CaFe2O4 which is solely responsible for its deactivation. Whereas, there was a slightly gasifiable carbon deposited on the CeO2 promoted Ni/CaFe2O4 catalyst which could be ascribed to the interaction effect of the CeO2 promoter on the Ni/CaFe2O4 catalyst.
The study investigates the thermo‐catalytic conversion of two principal greenhouse gases (methane and carbon dioxide) to carbon monoxide (CO)‐rich hydrogen (H2) over cerium oxide promoted calcium ferrite supported nickel catalyst. The effect of the CeO2 promoter on the activity and stability of the Ni/CaFe2O4 catalyst was examined.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/er.5346</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7200-3126</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2020-06, Vol.44 (8), p.6325-6337 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2413347513 |
source | Wiley Online Library All Journals |
subjects | Calcium Calcium ferrites calcium iron oxide Calcium oxide Carbon dioxide Carbon monoxide Catalysts Catalytic converters ceria promoter Cerium Cerium oxides Conversion Deactivation Gases Gasification Greenhouse effect Greenhouse gases hydrogen Iron oxides Lime Methane methane dry reforming Nickel Physicochemical processes Physicochemical properties syngas |
title | Thermo‐catalytic conversion of greenhouse gases (CO2 and CH4) to CO‐rich hydrogen by CeO2 modified calcium iron oxide supported nickel catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo%E2%80%90catalytic%20conversion%20of%20greenhouse%20gases%20(CO2%20and%20CH4)%20to%20CO%E2%80%90rich%20hydrogen%20by%20CeO2%20modified%20calcium%20iron%20oxide%20supported%20nickel%20catalyst&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Hossain,%20Mohammed%20Anwar&rft.date=2020-06-25&rft.volume=44&rft.issue=8&rft.spage=6325&rft.epage=6337&rft.pages=6325-6337&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.5346&rft_dat=%3Cproquest_wiley%3E2413347513%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413347513&rft_id=info:pmid/&rfr_iscdi=true |