An online state of health estimation method based on battery management system monitoring data

Summary A state of health (SOH) estimation method that can be achieved online and only requires battery management system (BMS) detection data is proposed in this article. In the State of Health mathematical model proposed in this article, the using time of power battery is treated as an independent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2020-06, Vol.44 (8), p.6338-6349
Hauptverfasser: Liu, Fang, Liu, Xinyi, Su, Weixing, Lin, Hui, Chen, Hanning, He, Maowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6349
container_issue 8
container_start_page 6338
container_title International journal of energy research
container_volume 44
creator Liu, Fang
Liu, Xinyi
Su, Weixing
Lin, Hui
Chen, Hanning
He, Maowei
description Summary A state of health (SOH) estimation method that can be achieved online and only requires battery management system (BMS) detection data is proposed in this article. In the State of Health mathematical model proposed in this article, the using time of power battery is treated as an independent variable and SOH is treated as a hidden variable. And the mathematical model just used online process data from BMS. So it would make the SOH estimation method more suitable for actual engineering. Then, the article proposes an interleaved time model parameter update framework to reduce the computational complexity of the algorithm in a single sampling period. In this framework, we propose a fast model parameter identification algorithm that uses nonlinear least squares to initialize a genetic algorithm searched range. Finally, the whole method is verified by using the NASA database. The results prove that the proposed online SOH estimation method has higher SOH estimation accuracy and is more suitable for engineering applications in the field of electric vehicles than the existing SOH estimation methods.
doi_str_mv 10.1002/er.5351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2413346230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413346230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3221-a291f2ae5ee772f038bdea4ca8796ba0df3748375964bf8a2073aae6cec85e53</originalsourceid><addsrcrecordid>eNp10EtLw0AQAOBFFKxV_AsLHjxIdB9JNjmWUh9QEKSHnlwmyaRNSXbr7hbJv3drvXqagfmYFyG3nD1yxsQTusdMZvyMTDgry4TzdH1OJkzmMimZWl-SK-93jMUaVxPyOTPUmr4zSH2AgNS2dIvQhy1FH7oBQmcNHTBsbUMr8NhEHpMQ0I10AAMbHNAE6kcfcKCDNV2wrjMb2kCAa3LRQu_x5i9Oyep5sZq_Jsv3l7f5bJnUUgiegCh5KwAzRKVEy2RRNQhpDYUq8wpY00qVFlJlZZ5WbQGCKQmAeY11kWEmp-Tu1Hbv7NchLq539uBMnKhFyqVMcyFZVPcnVTvrvcNW71280I2aM338nUanj7-L8uEkv7sex_-YXnz86h96vHAZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413346230</pqid></control><display><type>article</type><title>An online state of health estimation method based on battery management system monitoring data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Fang ; Liu, Xinyi ; Su, Weixing ; Lin, Hui ; Chen, Hanning ; He, Maowei</creator><creatorcontrib>Liu, Fang ; Liu, Xinyi ; Su, Weixing ; Lin, Hui ; Chen, Hanning ; He, Maowei</creatorcontrib><description>Summary A state of health (SOH) estimation method that can be achieved online and only requires battery management system (BMS) detection data is proposed in this article. In the State of Health mathematical model proposed in this article, the using time of power battery is treated as an independent variable and SOH is treated as a hidden variable. And the mathematical model just used online process data from BMS. So it would make the SOH estimation method more suitable for actual engineering. Then, the article proposes an interleaved time model parameter update framework to reduce the computational complexity of the algorithm in a single sampling period. In this framework, we propose a fast model parameter identification algorithm that uses nonlinear least squares to initialize a genetic algorithm searched range. Finally, the whole method is verified by using the NASA database. The results prove that the proposed online SOH estimation method has higher SOH estimation accuracy and is more suitable for engineering applications in the field of electric vehicles than the existing SOH estimation methods.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.5351</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Batteries ; battery mathematical model ; Computer applications ; Data base management systems ; Electric vehicles ; Engineering ; Genetic algorithms ; Independent variables ; Internet ; Mathematical models ; Monitoring ; NLS‐GA ; Parameter identification ; Power management ; SOH</subject><ispartof>International journal of energy research, 2020-06, Vol.44 (8), p.6338-6349</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3221-a291f2ae5ee772f038bdea4ca8796ba0df3748375964bf8a2073aae6cec85e53</citedby><cites>FETCH-LOGICAL-c3221-a291f2ae5ee772f038bdea4ca8796ba0df3748375964bf8a2073aae6cec85e53</cites><orcidid>0000-0002-5967-3424 ; 0000-0002-0482-3288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.5351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.5351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids></links><search><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Xinyi</creatorcontrib><creatorcontrib>Su, Weixing</creatorcontrib><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Chen, Hanning</creatorcontrib><creatorcontrib>He, Maowei</creatorcontrib><title>An online state of health estimation method based on battery management system monitoring data</title><title>International journal of energy research</title><description>Summary A state of health (SOH) estimation method that can be achieved online and only requires battery management system (BMS) detection data is proposed in this article. In the State of Health mathematical model proposed in this article, the using time of power battery is treated as an independent variable and SOH is treated as a hidden variable. And the mathematical model just used online process data from BMS. So it would make the SOH estimation method more suitable for actual engineering. Then, the article proposes an interleaved time model parameter update framework to reduce the computational complexity of the algorithm in a single sampling period. In this framework, we propose a fast model parameter identification algorithm that uses nonlinear least squares to initialize a genetic algorithm searched range. Finally, the whole method is verified by using the NASA database. The results prove that the proposed online SOH estimation method has higher SOH estimation accuracy and is more suitable for engineering applications in the field of electric vehicles than the existing SOH estimation methods.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>battery mathematical model</subject><subject>Computer applications</subject><subject>Data base management systems</subject><subject>Electric vehicles</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Independent variables</subject><subject>Internet</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>NLS‐GA</subject><subject>Parameter identification</subject><subject>Power management</subject><subject>SOH</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10EtLw0AQAOBFFKxV_AsLHjxIdB9JNjmWUh9QEKSHnlwmyaRNSXbr7hbJv3drvXqagfmYFyG3nD1yxsQTusdMZvyMTDgry4TzdH1OJkzmMimZWl-SK-93jMUaVxPyOTPUmr4zSH2AgNS2dIvQhy1FH7oBQmcNHTBsbUMr8NhEHpMQ0I10AAMbHNAE6kcfcKCDNV2wrjMb2kCAa3LRQu_x5i9Oyep5sZq_Jsv3l7f5bJnUUgiegCh5KwAzRKVEy2RRNQhpDYUq8wpY00qVFlJlZZ5WbQGCKQmAeY11kWEmp-Tu1Hbv7NchLq539uBMnKhFyqVMcyFZVPcnVTvrvcNW71280I2aM338nUanj7-L8uEkv7sex_-YXnz86h96vHAZ</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Liu, Fang</creator><creator>Liu, Xinyi</creator><creator>Su, Weixing</creator><creator>Lin, Hui</creator><creator>Chen, Hanning</creator><creator>He, Maowei</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5967-3424</orcidid><orcidid>https://orcid.org/0000-0002-0482-3288</orcidid></search><sort><creationdate>20200625</creationdate><title>An online state of health estimation method based on battery management system monitoring data</title><author>Liu, Fang ; Liu, Xinyi ; Su, Weixing ; Lin, Hui ; Chen, Hanning ; He, Maowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3221-a291f2ae5ee772f038bdea4ca8796ba0df3748375964bf8a2073aae6cec85e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>battery mathematical model</topic><topic>Computer applications</topic><topic>Data base management systems</topic><topic>Electric vehicles</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Independent variables</topic><topic>Internet</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>NLS‐GA</topic><topic>Parameter identification</topic><topic>Power management</topic><topic>SOH</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Xinyi</creatorcontrib><creatorcontrib>Su, Weixing</creatorcontrib><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Chen, Hanning</creatorcontrib><creatorcontrib>He, Maowei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fang</au><au>Liu, Xinyi</au><au>Su, Weixing</au><au>Lin, Hui</au><au>Chen, Hanning</au><au>He, Maowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An online state of health estimation method based on battery management system monitoring data</atitle><jtitle>International journal of energy research</jtitle><date>2020-06-25</date><risdate>2020</risdate><volume>44</volume><issue>8</issue><spage>6338</spage><epage>6349</epage><pages>6338-6349</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary A state of health (SOH) estimation method that can be achieved online and only requires battery management system (BMS) detection data is proposed in this article. In the State of Health mathematical model proposed in this article, the using time of power battery is treated as an independent variable and SOH is treated as a hidden variable. And the mathematical model just used online process data from BMS. So it would make the SOH estimation method more suitable for actual engineering. Then, the article proposes an interleaved time model parameter update framework to reduce the computational complexity of the algorithm in a single sampling period. In this framework, we propose a fast model parameter identification algorithm that uses nonlinear least squares to initialize a genetic algorithm searched range. Finally, the whole method is verified by using the NASA database. The results prove that the proposed online SOH estimation method has higher SOH estimation accuracy and is more suitable for engineering applications in the field of electric vehicles than the existing SOH estimation methods.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.5351</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5967-3424</orcidid><orcidid>https://orcid.org/0000-0002-0482-3288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2020-06, Vol.44 (8), p.6338-6349
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2413346230
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Batteries
battery mathematical model
Computer applications
Data base management systems
Electric vehicles
Engineering
Genetic algorithms
Independent variables
Internet
Mathematical models
Monitoring
NLS‐GA
Parameter identification
Power management
SOH
title An online state of health estimation method based on battery management system monitoring data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20online%20state%20of%20health%20estimation%20method%20based%20on%20battery%20management%20system%20monitoring%20data&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Liu,%20Fang&rft.date=2020-06-25&rft.volume=44&rft.issue=8&rft.spage=6338&rft.epage=6349&rft.pages=6338-6349&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.5351&rft_dat=%3Cproquest_cross%3E2413346230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413346230&rft_id=info:pmid/&rfr_iscdi=true