Object Detection through Modified YOLO Neural Network
In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease regardless of the object’s appearance, b...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2020, Vol.2020 (2020), p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Scientific programming |
container_volume | 2020 |
creator | Nazir, Shah Ahmad, Belal Yahya, Muhammad Ma, Yinglong Ahmad, Tanvir Haq, Amin Ul |
description | In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease regardless of the object’s appearance, but for computers it is challenging to identify and distinguish between things. In this paper, a modified YOLOv1 based neural network is proposed for object detection. The new neural network model has been improved in the following ways. Firstly, modification is made to the loss function of the YOLOv1 network. The improved model replaces the margin style with proportion style. Compared to the old loss function, the new is more flexible and more reasonable in optimizing the network error. Secondly, a spatial pyramid pooling layer is added; thirdly, an inception model with a convolution kernel of 1 ∗ 1 is added, which reduced the number of weight parameters of the layers. Extensive experiments on Pascal VOC datasets 2007/2012 showed that the proposed method achieved better performance. |
doi_str_mv | 10.1155/2020/8403262 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412814008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412814008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-3d81ed34c1dbc781ffd7fcee37ea77fcd2fd7a07cafc40dc5f0039653913db323</originalsourceid><addsrcrecordid>eNqF0MtLAzEQBvAgCtbqzbMseNS1M3l0s0epT6juRUFPIc3Dbq1Nze5S_O9N2YJHT98QfsyEj5BThCtEIUYUKIwkB0bHdI8MUBYiL7F8208zCJmXlPNDctQ0CwCUCDAgopotnGmzG9emqMMqa-cxdB_z7CnY2tfOZu_VtMqeXRf1MkW7CfHzmBx4vWzcyS6H5PXu9mXykE-r-8fJ9TQ3nI7bnFmJzjJu0M5MIdF7W3jjHCucLtJkaXrQUBjtDQdrhAdg5ViwEpmdMcqG5Lzfu47hu3NNqxahi6t0UlGOVCIHkEld9srE0DTRebWO9ZeOPwpBbYtR22LUrpjEL3o-r1dWb-r_9FmvXTLO6z9NIX2TsV94bmuN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412814008</pqid></control><display><type>article</type><title>Object Detection through Modified YOLO Neural Network</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nazir, Shah ; Ahmad, Belal ; Yahya, Muhammad ; Ma, Yinglong ; Ahmad, Tanvir ; Haq, Amin Ul</creator><contributor>Ali, Rahman ; Rahman Ali</contributor><creatorcontrib>Nazir, Shah ; Ahmad, Belal ; Yahya, Muhammad ; Ma, Yinglong ; Ahmad, Tanvir ; Haq, Amin Ul ; Ali, Rahman ; Rahman Ali</creatorcontrib><description>In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease regardless of the object’s appearance, but for computers it is challenging to identify and distinguish between things. In this paper, a modified YOLOv1 based neural network is proposed for object detection. The new neural network model has been improved in the following ways. Firstly, modification is made to the loss function of the YOLOv1 network. The improved model replaces the margin style with proportion style. Compared to the old loss function, the new is more flexible and more reasonable in optimizing the network error. Secondly, a spatial pyramid pooling layer is added; thirdly, an inception model with a convolution kernel of 1 ∗ 1 is added, which reduced the number of weight parameters of the layers. Extensive experiments on Pascal VOC datasets 2007/2012 showed that the proposed method achieved better performance.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2020/8403262</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Back propagation ; Classification ; Computer simulation ; Convolution ; Deep learning ; Image detection ; Machine learning ; Methods ; Neural networks ; Object recognition ; Researchers</subject><ispartof>Scientific programming, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Tanvir Ahmad et al.</rights><rights>Copyright © 2020 Tanvir Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-3d81ed34c1dbc781ffd7fcee37ea77fcd2fd7a07cafc40dc5f0039653913db323</citedby><cites>FETCH-LOGICAL-c426t-3d81ed34c1dbc781ffd7fcee37ea77fcd2fd7a07cafc40dc5f0039653913db323</cites><orcidid>0000-0002-7774-5604 ; 0000-0002-7187-1730 ; 0000-0003-4732-4865 ; 0000-0003-0126-9944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Ali, Rahman</contributor><contributor>Rahman Ali</contributor><creatorcontrib>Nazir, Shah</creatorcontrib><creatorcontrib>Ahmad, Belal</creatorcontrib><creatorcontrib>Yahya, Muhammad</creatorcontrib><creatorcontrib>Ma, Yinglong</creatorcontrib><creatorcontrib>Ahmad, Tanvir</creatorcontrib><creatorcontrib>Haq, Amin Ul</creatorcontrib><title>Object Detection through Modified YOLO Neural Network</title><title>Scientific programming</title><description>In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease regardless of the object’s appearance, but for computers it is challenging to identify and distinguish between things. In this paper, a modified YOLOv1 based neural network is proposed for object detection. The new neural network model has been improved in the following ways. Firstly, modification is made to the loss function of the YOLOv1 network. The improved model replaces the margin style with proportion style. Compared to the old loss function, the new is more flexible and more reasonable in optimizing the network error. Secondly, a spatial pyramid pooling layer is added; thirdly, an inception model with a convolution kernel of 1 ∗ 1 is added, which reduced the number of weight parameters of the layers. Extensive experiments on Pascal VOC datasets 2007/2012 showed that the proposed method achieved better performance.</description><subject>Accuracy</subject><subject>Back propagation</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Image detection</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Researchers</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0MtLAzEQBvAgCtbqzbMseNS1M3l0s0epT6juRUFPIc3Dbq1Nze5S_O9N2YJHT98QfsyEj5BThCtEIUYUKIwkB0bHdI8MUBYiL7F8208zCJmXlPNDctQ0CwCUCDAgopotnGmzG9emqMMqa-cxdB_z7CnY2tfOZu_VtMqeXRf1MkW7CfHzmBx4vWzcyS6H5PXu9mXykE-r-8fJ9TQ3nI7bnFmJzjJu0M5MIdF7W3jjHCucLtJkaXrQUBjtDQdrhAdg5ViwEpmdMcqG5Lzfu47hu3NNqxahi6t0UlGOVCIHkEld9srE0DTRebWO9ZeOPwpBbYtR22LUrpjEL3o-r1dWb-r_9FmvXTLO6z9NIX2TsV94bmuN</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Nazir, Shah</creator><creator>Ahmad, Belal</creator><creator>Yahya, Muhammad</creator><creator>Ma, Yinglong</creator><creator>Ahmad, Tanvir</creator><creator>Haq, Amin Ul</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7774-5604</orcidid><orcidid>https://orcid.org/0000-0002-7187-1730</orcidid><orcidid>https://orcid.org/0000-0003-4732-4865</orcidid><orcidid>https://orcid.org/0000-0003-0126-9944</orcidid></search><sort><creationdate>2020</creationdate><title>Object Detection through Modified YOLO Neural Network</title><author>Nazir, Shah ; Ahmad, Belal ; Yahya, Muhammad ; Ma, Yinglong ; Ahmad, Tanvir ; Haq, Amin Ul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-3d81ed34c1dbc781ffd7fcee37ea77fcd2fd7a07cafc40dc5f0039653913db323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Back propagation</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Image detection</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazir, Shah</creatorcontrib><creatorcontrib>Ahmad, Belal</creatorcontrib><creatorcontrib>Yahya, Muhammad</creatorcontrib><creatorcontrib>Ma, Yinglong</creatorcontrib><creatorcontrib>Ahmad, Tanvir</creatorcontrib><creatorcontrib>Haq, Amin Ul</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazir, Shah</au><au>Ahmad, Belal</au><au>Yahya, Muhammad</au><au>Ma, Yinglong</au><au>Ahmad, Tanvir</au><au>Haq, Amin Ul</au><au>Ali, Rahman</au><au>Rahman Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object Detection through Modified YOLO Neural Network</atitle><jtitle>Scientific programming</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease regardless of the object’s appearance, but for computers it is challenging to identify and distinguish between things. In this paper, a modified YOLOv1 based neural network is proposed for object detection. The new neural network model has been improved in the following ways. Firstly, modification is made to the loss function of the YOLOv1 network. The improved model replaces the margin style with proportion style. Compared to the old loss function, the new is more flexible and more reasonable in optimizing the network error. Secondly, a spatial pyramid pooling layer is added; thirdly, an inception model with a convolution kernel of 1 ∗ 1 is added, which reduced the number of weight parameters of the layers. Extensive experiments on Pascal VOC datasets 2007/2012 showed that the proposed method achieved better performance.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8403262</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7774-5604</orcidid><orcidid>https://orcid.org/0000-0002-7187-1730</orcidid><orcidid>https://orcid.org/0000-0003-4732-4865</orcidid><orcidid>https://orcid.org/0000-0003-0126-9944</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9244 |
ispartof | Scientific programming, 2020, Vol.2020 (2020), p.1-10 |
issn | 1058-9244 1875-919X |
language | eng |
recordid | cdi_proquest_journals_2412814008 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accuracy Back propagation Classification Computer simulation Convolution Deep learning Image detection Machine learning Methods Neural networks Object recognition Researchers |
title | Object Detection through Modified YOLO Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20Detection%20through%20Modified%20YOLO%20Neural%20Network&rft.jtitle=Scientific%20programming&rft.au=Nazir,%20Shah&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2020/8403262&rft_dat=%3Cproquest_cross%3E2412814008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412814008&rft_id=info:pmid/&rfr_iscdi=true |