Object Detection through Modified YOLO Neural Network

In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease regardless of the object’s appearance, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2020, Vol.2020 (2020), p.1-10
Hauptverfasser: Nazir, Shah, Ahmad, Belal, Yahya, Muhammad, Ma, Yinglong, Ahmad, Tanvir, Haq, Amin Ul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2020
container_start_page 1
container_title Scientific programming
container_volume 2020
creator Nazir, Shah
Ahmad, Belal
Yahya, Muhammad
Ma, Yinglong
Ahmad, Tanvir
Haq, Amin Ul
description In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease regardless of the object’s appearance, but for computers it is challenging to identify and distinguish between things. In this paper, a modified YOLOv1 based neural network is proposed for object detection. The new neural network model has been improved in the following ways. Firstly, modification is made to the loss function of the YOLOv1 network. The improved model replaces the margin style with proportion style. Compared to the old loss function, the new is more flexible and more reasonable in optimizing the network error. Secondly, a spatial pyramid pooling layer is added; thirdly, an inception model with a convolution kernel of 1 ∗ 1 is added, which reduced the number of weight parameters of the layers. Extensive experiments on Pascal VOC datasets 2007/2012 showed that the proposed method achieved better performance.
doi_str_mv 10.1155/2020/8403262
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412814008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412814008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-3d81ed34c1dbc781ffd7fcee37ea77fcd2fd7a07cafc40dc5f0039653913db323</originalsourceid><addsrcrecordid>eNqF0MtLAzEQBvAgCtbqzbMseNS1M3l0s0epT6juRUFPIc3Dbq1Nze5S_O9N2YJHT98QfsyEj5BThCtEIUYUKIwkB0bHdI8MUBYiL7F8208zCJmXlPNDctQ0CwCUCDAgopotnGmzG9emqMMqa-cxdB_z7CnY2tfOZu_VtMqeXRf1MkW7CfHzmBx4vWzcyS6H5PXu9mXykE-r-8fJ9TQ3nI7bnFmJzjJu0M5MIdF7W3jjHCucLtJkaXrQUBjtDQdrhAdg5ViwEpmdMcqG5Lzfu47hu3NNqxahi6t0UlGOVCIHkEld9srE0DTRebWO9ZeOPwpBbYtR22LUrpjEL3o-r1dWb-r_9FmvXTLO6z9NIX2TsV94bmuN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412814008</pqid></control><display><type>article</type><title>Object Detection through Modified YOLO Neural Network</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nazir, Shah ; Ahmad, Belal ; Yahya, Muhammad ; Ma, Yinglong ; Ahmad, Tanvir ; Haq, Amin Ul</creator><contributor>Ali, Rahman ; Rahman Ali</contributor><creatorcontrib>Nazir, Shah ; Ahmad, Belal ; Yahya, Muhammad ; Ma, Yinglong ; Ahmad, Tanvir ; Haq, Amin Ul ; Ali, Rahman ; Rahman Ali</creatorcontrib><description>In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease regardless of the object’s appearance, but for computers it is challenging to identify and distinguish between things. In this paper, a modified YOLOv1 based neural network is proposed for object detection. The new neural network model has been improved in the following ways. Firstly, modification is made to the loss function of the YOLOv1 network. The improved model replaces the margin style with proportion style. Compared to the old loss function, the new is more flexible and more reasonable in optimizing the network error. Secondly, a spatial pyramid pooling layer is added; thirdly, an inception model with a convolution kernel of 1 ∗ 1 is added, which reduced the number of weight parameters of the layers. Extensive experiments on Pascal VOC datasets 2007/2012 showed that the proposed method achieved better performance.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2020/8403262</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Back propagation ; Classification ; Computer simulation ; Convolution ; Deep learning ; Image detection ; Machine learning ; Methods ; Neural networks ; Object recognition ; Researchers</subject><ispartof>Scientific programming, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Tanvir Ahmad et al.</rights><rights>Copyright © 2020 Tanvir Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-3d81ed34c1dbc781ffd7fcee37ea77fcd2fd7a07cafc40dc5f0039653913db323</citedby><cites>FETCH-LOGICAL-c426t-3d81ed34c1dbc781ffd7fcee37ea77fcd2fd7a07cafc40dc5f0039653913db323</cites><orcidid>0000-0002-7774-5604 ; 0000-0002-7187-1730 ; 0000-0003-4732-4865 ; 0000-0003-0126-9944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Ali, Rahman</contributor><contributor>Rahman Ali</contributor><creatorcontrib>Nazir, Shah</creatorcontrib><creatorcontrib>Ahmad, Belal</creatorcontrib><creatorcontrib>Yahya, Muhammad</creatorcontrib><creatorcontrib>Ma, Yinglong</creatorcontrib><creatorcontrib>Ahmad, Tanvir</creatorcontrib><creatorcontrib>Haq, Amin Ul</creatorcontrib><title>Object Detection through Modified YOLO Neural Network</title><title>Scientific programming</title><description>In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease regardless of the object’s appearance, but for computers it is challenging to identify and distinguish between things. In this paper, a modified YOLOv1 based neural network is proposed for object detection. The new neural network model has been improved in the following ways. Firstly, modification is made to the loss function of the YOLOv1 network. The improved model replaces the margin style with proportion style. Compared to the old loss function, the new is more flexible and more reasonable in optimizing the network error. Secondly, a spatial pyramid pooling layer is added; thirdly, an inception model with a convolution kernel of 1 ∗ 1 is added, which reduced the number of weight parameters of the layers. Extensive experiments on Pascal VOC datasets 2007/2012 showed that the proposed method achieved better performance.</description><subject>Accuracy</subject><subject>Back propagation</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Image detection</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Researchers</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0MtLAzEQBvAgCtbqzbMseNS1M3l0s0epT6juRUFPIc3Dbq1Nze5S_O9N2YJHT98QfsyEj5BThCtEIUYUKIwkB0bHdI8MUBYiL7F8208zCJmXlPNDctQ0CwCUCDAgopotnGmzG9emqMMqa-cxdB_z7CnY2tfOZu_VtMqeXRf1MkW7CfHzmBx4vWzcyS6H5PXu9mXykE-r-8fJ9TQ3nI7bnFmJzjJu0M5MIdF7W3jjHCucLtJkaXrQUBjtDQdrhAdg5ViwEpmdMcqG5Lzfu47hu3NNqxahi6t0UlGOVCIHkEld9srE0DTRebWO9ZeOPwpBbYtR22LUrpjEL3o-r1dWb-r_9FmvXTLO6z9NIX2TsV94bmuN</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Nazir, Shah</creator><creator>Ahmad, Belal</creator><creator>Yahya, Muhammad</creator><creator>Ma, Yinglong</creator><creator>Ahmad, Tanvir</creator><creator>Haq, Amin Ul</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7774-5604</orcidid><orcidid>https://orcid.org/0000-0002-7187-1730</orcidid><orcidid>https://orcid.org/0000-0003-4732-4865</orcidid><orcidid>https://orcid.org/0000-0003-0126-9944</orcidid></search><sort><creationdate>2020</creationdate><title>Object Detection through Modified YOLO Neural Network</title><author>Nazir, Shah ; Ahmad, Belal ; Yahya, Muhammad ; Ma, Yinglong ; Ahmad, Tanvir ; Haq, Amin Ul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-3d81ed34c1dbc781ffd7fcee37ea77fcd2fd7a07cafc40dc5f0039653913db323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Back propagation</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Image detection</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazir, Shah</creatorcontrib><creatorcontrib>Ahmad, Belal</creatorcontrib><creatorcontrib>Yahya, Muhammad</creatorcontrib><creatorcontrib>Ma, Yinglong</creatorcontrib><creatorcontrib>Ahmad, Tanvir</creatorcontrib><creatorcontrib>Haq, Amin Ul</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazir, Shah</au><au>Ahmad, Belal</au><au>Yahya, Muhammad</au><au>Ma, Yinglong</au><au>Ahmad, Tanvir</au><au>Haq, Amin Ul</au><au>Ali, Rahman</au><au>Rahman Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object Detection through Modified YOLO Neural Network</atitle><jtitle>Scientific programming</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease regardless of the object’s appearance, but for computers it is challenging to identify and distinguish between things. In this paper, a modified YOLOv1 based neural network is proposed for object detection. The new neural network model has been improved in the following ways. Firstly, modification is made to the loss function of the YOLOv1 network. The improved model replaces the margin style with proportion style. Compared to the old loss function, the new is more flexible and more reasonable in optimizing the network error. Secondly, a spatial pyramid pooling layer is added; thirdly, an inception model with a convolution kernel of 1 ∗ 1 is added, which reduced the number of weight parameters of the layers. Extensive experiments on Pascal VOC datasets 2007/2012 showed that the proposed method achieved better performance.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8403262</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7774-5604</orcidid><orcidid>https://orcid.org/0000-0002-7187-1730</orcidid><orcidid>https://orcid.org/0000-0003-4732-4865</orcidid><orcidid>https://orcid.org/0000-0003-0126-9944</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2020, Vol.2020 (2020), p.1-10
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2412814008
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Back propagation
Classification
Computer simulation
Convolution
Deep learning
Image detection
Machine learning
Methods
Neural networks
Object recognition
Researchers
title Object Detection through Modified YOLO Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20Detection%20through%20Modified%20YOLO%20Neural%20Network&rft.jtitle=Scientific%20programming&rft.au=Nazir,%20Shah&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2020/8403262&rft_dat=%3Cproquest_cross%3E2412814008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412814008&rft_id=info:pmid/&rfr_iscdi=true