Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers
Efficient supercontinuum generation demands for fine‐tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Usin...
Gespeichert in:
Veröffentlicht in: | Laser & photonics reviews 2020-06, Vol.14 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Laser & photonics reviews |
container_volume | 14 |
creator | Lühder, Tilman A. K. Schaarschmidt, Kay Goerke, Sebastian Schartner, Erik P. Ebendorff‐Heidepriem, Heike Schmidt, Markus A. |
description | Efficient supercontinuum generation demands for fine‐tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub‐nanometer precision both zero‐dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics.
Nanofilm enhanced exposed core fibers enable tailoring of dispersion landscapes and feature shifting capabilities of both zero dispersion and dispersive wave emission wavelengths by more than 200 nm. This concept is straightforwardly extendable to a variety of materials and deposition techniques and makes otherwise unsuitable waveguides relevant for ultrafast tailorable nonlinear photonics. |
doi_str_mv | 10.1002/lpor.201900418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412769121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412769121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-c96bc07ae9f6f13db5d166991b762a38ee816aaafae37b97191787a0ea467f113</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU5OZNj9Lqa0WSiulrsOdmURSpsmYdNTufASf0Sdxhkpdejf3XvjOOXAQuqZkQAlJb6vah0FKqCRkSMUJ6lHBskQIKU-PtyDn6CLGDSGjdlgP-ZWO3oEr9Pfn18yVTaFLfG9jrUO03uF146x7wcYHvAZb-dB9C--ir-zOO1vgFZQWdh37ZgEvwHljq23E1uHJR-1j6zf2QeOpzVvPS3RmoIr66nf30fN0sh4_JvPlw2x8N0-KbMRFUkiWF4SDloYZmpX5qKSMSUlzzlLIhNaCMgAwoDOeS04l5YID0TBk3FCa9dHNwbcO_rXRcac2vgmujVTpkKacSZp21OBAFcHHGLRRdbBbCHtFiepKVV2p6lhqK5AHwbut9P4fWs2flqs_7Q--PH4-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412769121</pqid></control><display><type>article</type><title>Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers</title><source>Access via Wiley Online Library</source><creator>Lühder, Tilman A. K. ; Schaarschmidt, Kay ; Goerke, Sebastian ; Schartner, Erik P. ; Ebendorff‐Heidepriem, Heike ; Schmidt, Markus A.</creator><creatorcontrib>Lühder, Tilman A. K. ; Schaarschmidt, Kay ; Goerke, Sebastian ; Schartner, Erik P. ; Ebendorff‐Heidepriem, Heike ; Schmidt, Markus A.</creatorcontrib><description>Efficient supercontinuum generation demands for fine‐tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub‐nanometer precision both zero‐dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics.
Nanofilm enhanced exposed core fibers enable tailoring of dispersion landscapes and feature shifting capabilities of both zero dispersion and dispersive wave emission wavelengths by more than 200 nm. This concept is straightforwardly extendable to a variety of materials and deposition techniques and makes otherwise unsuitable waveguides relevant for ultrafast tailorable nonlinear photonics.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.201900418</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>anti‐crossing ; dispersive waves ; Dynamical systems ; Emission ; Multilayers ; nanolayer ; Nonlinear dynamics ; Nonlinear systems ; optical fibers ; solitons ; TiO2 ; Tuning ; Two dimensional materials ; Wave dispersion ; Waveguides ; Wavelengths</subject><ispartof>Laser & photonics reviews, 2020-06, Vol.14 (6), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-c96bc07ae9f6f13db5d166991b762a38ee816aaafae37b97191787a0ea467f113</citedby><cites>FETCH-LOGICAL-c3578-c96bc07ae9f6f13db5d166991b762a38ee816aaafae37b97191787a0ea467f113</cites><orcidid>0000-0003-1669-4302 ; 0000-0002-5324-6405 ; 0000-0003-2679-8324 ; 0000-0002-4180-3593 ; 0000-0002-4877-7770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.201900418$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.201900418$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lühder, Tilman A. K.</creatorcontrib><creatorcontrib>Schaarschmidt, Kay</creatorcontrib><creatorcontrib>Goerke, Sebastian</creatorcontrib><creatorcontrib>Schartner, Erik P.</creatorcontrib><creatorcontrib>Ebendorff‐Heidepriem, Heike</creatorcontrib><creatorcontrib>Schmidt, Markus A.</creatorcontrib><title>Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers</title><title>Laser & photonics reviews</title><description>Efficient supercontinuum generation demands for fine‐tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub‐nanometer precision both zero‐dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics.
Nanofilm enhanced exposed core fibers enable tailoring of dispersion landscapes and feature shifting capabilities of both zero dispersion and dispersive wave emission wavelengths by more than 200 nm. This concept is straightforwardly extendable to a variety of materials and deposition techniques and makes otherwise unsuitable waveguides relevant for ultrafast tailorable nonlinear photonics.</description><subject>anti‐crossing</subject><subject>dispersive waves</subject><subject>Dynamical systems</subject><subject>Emission</subject><subject>Multilayers</subject><subject>nanolayer</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>optical fibers</subject><subject>solitons</subject><subject>TiO2</subject><subject>Tuning</subject><subject>Two dimensional materials</subject><subject>Wave dispersion</subject><subject>Waveguides</subject><subject>Wavelengths</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU5OZNj9Lqa0WSiulrsOdmURSpsmYdNTufASf0Sdxhkpdejf3XvjOOXAQuqZkQAlJb6vah0FKqCRkSMUJ6lHBskQIKU-PtyDn6CLGDSGjdlgP-ZWO3oEr9Pfn18yVTaFLfG9jrUO03uF146x7wcYHvAZb-dB9C--ir-zOO1vgFZQWdh37ZgEvwHljq23E1uHJR-1j6zf2QeOpzVvPS3RmoIr66nf30fN0sh4_JvPlw2x8N0-KbMRFUkiWF4SDloYZmpX5qKSMSUlzzlLIhNaCMgAwoDOeS04l5YID0TBk3FCa9dHNwbcO_rXRcac2vgmujVTpkKacSZp21OBAFcHHGLRRdbBbCHtFiepKVV2p6lhqK5AHwbut9P4fWs2flqs_7Q--PH4-</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Lühder, Tilman A. K.</creator><creator>Schaarschmidt, Kay</creator><creator>Goerke, Sebastian</creator><creator>Schartner, Erik P.</creator><creator>Ebendorff‐Heidepriem, Heike</creator><creator>Schmidt, Markus A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1669-4302</orcidid><orcidid>https://orcid.org/0000-0002-5324-6405</orcidid><orcidid>https://orcid.org/0000-0003-2679-8324</orcidid><orcidid>https://orcid.org/0000-0002-4180-3593</orcidid><orcidid>https://orcid.org/0000-0002-4877-7770</orcidid></search><sort><creationdate>202006</creationdate><title>Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers</title><author>Lühder, Tilman A. K. ; Schaarschmidt, Kay ; Goerke, Sebastian ; Schartner, Erik P. ; Ebendorff‐Heidepriem, Heike ; Schmidt, Markus A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-c96bc07ae9f6f13db5d166991b762a38ee816aaafae37b97191787a0ea467f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anti‐crossing</topic><topic>dispersive waves</topic><topic>Dynamical systems</topic><topic>Emission</topic><topic>Multilayers</topic><topic>nanolayer</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>optical fibers</topic><topic>solitons</topic><topic>TiO2</topic><topic>Tuning</topic><topic>Two dimensional materials</topic><topic>Wave dispersion</topic><topic>Waveguides</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lühder, Tilman A. K.</creatorcontrib><creatorcontrib>Schaarschmidt, Kay</creatorcontrib><creatorcontrib>Goerke, Sebastian</creatorcontrib><creatorcontrib>Schartner, Erik P.</creatorcontrib><creatorcontrib>Ebendorff‐Heidepriem, Heike</creatorcontrib><creatorcontrib>Schmidt, Markus A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser & photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lühder, Tilman A. K.</au><au>Schaarschmidt, Kay</au><au>Goerke, Sebastian</au><au>Schartner, Erik P.</au><au>Ebendorff‐Heidepriem, Heike</au><au>Schmidt, Markus A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers</atitle><jtitle>Laser & photonics reviews</jtitle><date>2020-06</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Efficient supercontinuum generation demands for fine‐tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub‐nanometer precision both zero‐dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics.
Nanofilm enhanced exposed core fibers enable tailoring of dispersion landscapes and feature shifting capabilities of both zero dispersion and dispersive wave emission wavelengths by more than 200 nm. This concept is straightforwardly extendable to a variety of materials and deposition techniques and makes otherwise unsuitable waveguides relevant for ultrafast tailorable nonlinear photonics.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.201900418</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1669-4302</orcidid><orcidid>https://orcid.org/0000-0002-5324-6405</orcidid><orcidid>https://orcid.org/0000-0003-2679-8324</orcidid><orcidid>https://orcid.org/0000-0002-4180-3593</orcidid><orcidid>https://orcid.org/0000-0002-4877-7770</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-8880 |
ispartof | Laser & photonics reviews, 2020-06, Vol.14 (6), p.n/a |
issn | 1863-8880 1863-8899 |
language | eng |
recordid | cdi_proquest_journals_2412769121 |
source | Access via Wiley Online Library |
subjects | anti‐crossing dispersive waves Dynamical systems Emission Multilayers nanolayer Nonlinear dynamics Nonlinear systems optical fibers solitons TiO2 Tuning Two dimensional materials Wave dispersion Waveguides Wavelengths |
title | Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance%E2%80%90Induced%20Dispersion%20Tuning%20for%20Tailoring%20Nonsolitonic%20Radiation%20via%20Nanofilms%20in%20Exposed%20Core%20Fibers&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=L%C3%BChder,%20Tilman%20A.%20K.&rft.date=2020-06&rft.volume=14&rft.issue=6&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.201900418&rft_dat=%3Cproquest_cross%3E2412769121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412769121&rft_id=info:pmid/&rfr_iscdi=true |