Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers

Efficient supercontinuum generation demands for fine‐tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2020-06, Vol.14 (6), p.n/a
Hauptverfasser: Lühder, Tilman A. K., Schaarschmidt, Kay, Goerke, Sebastian, Schartner, Erik P., Ebendorff‐Heidepriem, Heike, Schmidt, Markus A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Laser & photonics reviews
container_volume 14
creator Lühder, Tilman A. K.
Schaarschmidt, Kay
Goerke, Sebastian
Schartner, Erik P.
Ebendorff‐Heidepriem, Heike
Schmidt, Markus A.
description Efficient supercontinuum generation demands for fine‐tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub‐nanometer precision both zero‐dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics. Nanofilm enhanced exposed core fibers enable tailoring of dispersion landscapes and feature shifting capabilities of both zero dispersion and dispersive wave emission wavelengths by more than 200 nm. This concept is straightforwardly extendable to a variety of materials and deposition techniques and makes otherwise unsuitable waveguides relevant for ultrafast tailorable nonlinear photonics.
doi_str_mv 10.1002/lpor.201900418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412769121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412769121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-c96bc07ae9f6f13db5d166991b762a38ee816aaafae37b97191787a0ea467f113</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU5OZNj9Lqa0WSiulrsOdmURSpsmYdNTufASf0Sdxhkpdejf3XvjOOXAQuqZkQAlJb6vah0FKqCRkSMUJ6lHBskQIKU-PtyDn6CLGDSGjdlgP-ZWO3oEr9Pfn18yVTaFLfG9jrUO03uF146x7wcYHvAZb-dB9C--ir-zOO1vgFZQWdh37ZgEvwHljq23E1uHJR-1j6zf2QeOpzVvPS3RmoIr66nf30fN0sh4_JvPlw2x8N0-KbMRFUkiWF4SDloYZmpX5qKSMSUlzzlLIhNaCMgAwoDOeS04l5YID0TBk3FCa9dHNwbcO_rXRcac2vgmujVTpkKacSZp21OBAFcHHGLRRdbBbCHtFiepKVV2p6lhqK5AHwbut9P4fWs2flqs_7Q--PH4-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412769121</pqid></control><display><type>article</type><title>Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers</title><source>Access via Wiley Online Library</source><creator>Lühder, Tilman A. K. ; Schaarschmidt, Kay ; Goerke, Sebastian ; Schartner, Erik P. ; Ebendorff‐Heidepriem, Heike ; Schmidt, Markus A.</creator><creatorcontrib>Lühder, Tilman A. K. ; Schaarschmidt, Kay ; Goerke, Sebastian ; Schartner, Erik P. ; Ebendorff‐Heidepriem, Heike ; Schmidt, Markus A.</creatorcontrib><description>Efficient supercontinuum generation demands for fine‐tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub‐nanometer precision both zero‐dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics. Nanofilm enhanced exposed core fibers enable tailoring of dispersion landscapes and feature shifting capabilities of both zero dispersion and dispersive wave emission wavelengths by more than 200 nm. This concept is straightforwardly extendable to a variety of materials and deposition techniques and makes otherwise unsuitable waveguides relevant for ultrafast tailorable nonlinear photonics.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.201900418</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>anti‐crossing ; dispersive waves ; Dynamical systems ; Emission ; Multilayers ; nanolayer ; Nonlinear dynamics ; Nonlinear systems ; optical fibers ; solitons ; TiO2 ; Tuning ; Two dimensional materials ; Wave dispersion ; Waveguides ; Wavelengths</subject><ispartof>Laser &amp; photonics reviews, 2020-06, Vol.14 (6), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-c96bc07ae9f6f13db5d166991b762a38ee816aaafae37b97191787a0ea467f113</citedby><cites>FETCH-LOGICAL-c3578-c96bc07ae9f6f13db5d166991b762a38ee816aaafae37b97191787a0ea467f113</cites><orcidid>0000-0003-1669-4302 ; 0000-0002-5324-6405 ; 0000-0003-2679-8324 ; 0000-0002-4180-3593 ; 0000-0002-4877-7770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.201900418$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.201900418$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lühder, Tilman A. K.</creatorcontrib><creatorcontrib>Schaarschmidt, Kay</creatorcontrib><creatorcontrib>Goerke, Sebastian</creatorcontrib><creatorcontrib>Schartner, Erik P.</creatorcontrib><creatorcontrib>Ebendorff‐Heidepriem, Heike</creatorcontrib><creatorcontrib>Schmidt, Markus A.</creatorcontrib><title>Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers</title><title>Laser &amp; photonics reviews</title><description>Efficient supercontinuum generation demands for fine‐tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub‐nanometer precision both zero‐dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics. Nanofilm enhanced exposed core fibers enable tailoring of dispersion landscapes and feature shifting capabilities of both zero dispersion and dispersive wave emission wavelengths by more than 200 nm. This concept is straightforwardly extendable to a variety of materials and deposition techniques and makes otherwise unsuitable waveguides relevant for ultrafast tailorable nonlinear photonics.</description><subject>anti‐crossing</subject><subject>dispersive waves</subject><subject>Dynamical systems</subject><subject>Emission</subject><subject>Multilayers</subject><subject>nanolayer</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>optical fibers</subject><subject>solitons</subject><subject>TiO2</subject><subject>Tuning</subject><subject>Two dimensional materials</subject><subject>Wave dispersion</subject><subject>Waveguides</subject><subject>Wavelengths</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU5OZNj9Lqa0WSiulrsOdmURSpsmYdNTufASf0Sdxhkpdejf3XvjOOXAQuqZkQAlJb6vah0FKqCRkSMUJ6lHBskQIKU-PtyDn6CLGDSGjdlgP-ZWO3oEr9Pfn18yVTaFLfG9jrUO03uF146x7wcYHvAZb-dB9C--ir-zOO1vgFZQWdh37ZgEvwHljq23E1uHJR-1j6zf2QeOpzVvPS3RmoIr66nf30fN0sh4_JvPlw2x8N0-KbMRFUkiWF4SDloYZmpX5qKSMSUlzzlLIhNaCMgAwoDOeS04l5YID0TBk3FCa9dHNwbcO_rXRcac2vgmujVTpkKacSZp21OBAFcHHGLRRdbBbCHtFiepKVV2p6lhqK5AHwbut9P4fWs2flqs_7Q--PH4-</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Lühder, Tilman A. K.</creator><creator>Schaarschmidt, Kay</creator><creator>Goerke, Sebastian</creator><creator>Schartner, Erik P.</creator><creator>Ebendorff‐Heidepriem, Heike</creator><creator>Schmidt, Markus A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1669-4302</orcidid><orcidid>https://orcid.org/0000-0002-5324-6405</orcidid><orcidid>https://orcid.org/0000-0003-2679-8324</orcidid><orcidid>https://orcid.org/0000-0002-4180-3593</orcidid><orcidid>https://orcid.org/0000-0002-4877-7770</orcidid></search><sort><creationdate>202006</creationdate><title>Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers</title><author>Lühder, Tilman A. K. ; Schaarschmidt, Kay ; Goerke, Sebastian ; Schartner, Erik P. ; Ebendorff‐Heidepriem, Heike ; Schmidt, Markus A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-c96bc07ae9f6f13db5d166991b762a38ee816aaafae37b97191787a0ea467f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anti‐crossing</topic><topic>dispersive waves</topic><topic>Dynamical systems</topic><topic>Emission</topic><topic>Multilayers</topic><topic>nanolayer</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>optical fibers</topic><topic>solitons</topic><topic>TiO2</topic><topic>Tuning</topic><topic>Two dimensional materials</topic><topic>Wave dispersion</topic><topic>Waveguides</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lühder, Tilman A. K.</creatorcontrib><creatorcontrib>Schaarschmidt, Kay</creatorcontrib><creatorcontrib>Goerke, Sebastian</creatorcontrib><creatorcontrib>Schartner, Erik P.</creatorcontrib><creatorcontrib>Ebendorff‐Heidepriem, Heike</creatorcontrib><creatorcontrib>Schmidt, Markus A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lühder, Tilman A. K.</au><au>Schaarschmidt, Kay</au><au>Goerke, Sebastian</au><au>Schartner, Erik P.</au><au>Ebendorff‐Heidepriem, Heike</au><au>Schmidt, Markus A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2020-06</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Efficient supercontinuum generation demands for fine‐tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub‐nanometer precision both zero‐dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics. Nanofilm enhanced exposed core fibers enable tailoring of dispersion landscapes and feature shifting capabilities of both zero dispersion and dispersive wave emission wavelengths by more than 200 nm. This concept is straightforwardly extendable to a variety of materials and deposition techniques and makes otherwise unsuitable waveguides relevant for ultrafast tailorable nonlinear photonics.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.201900418</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1669-4302</orcidid><orcidid>https://orcid.org/0000-0002-5324-6405</orcidid><orcidid>https://orcid.org/0000-0003-2679-8324</orcidid><orcidid>https://orcid.org/0000-0002-4180-3593</orcidid><orcidid>https://orcid.org/0000-0002-4877-7770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2020-06, Vol.14 (6), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2412769121
source Access via Wiley Online Library
subjects anti‐crossing
dispersive waves
Dynamical systems
Emission
Multilayers
nanolayer
Nonlinear dynamics
Nonlinear systems
optical fibers
solitons
TiO2
Tuning
Two dimensional materials
Wave dispersion
Waveguides
Wavelengths
title Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance%E2%80%90Induced%20Dispersion%20Tuning%20for%20Tailoring%20Nonsolitonic%20Radiation%20via%20Nanofilms%20in%20Exposed%20Core%20Fibers&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=L%C3%BChder,%20Tilman%20A.%20K.&rft.date=2020-06&rft.volume=14&rft.issue=6&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.201900418&rft_dat=%3Cproquest_cross%3E2412769121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412769121&rft_id=info:pmid/&rfr_iscdi=true