Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model

Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JETP letters 2020-04, Vol.111 (7), p.383-388
1. Verfasser: Ruban, V. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 7
container_start_page 383
container_title JETP letters
container_volume 111
creator Ruban, V. P.
description Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).
doi_str_mv 10.1134/S0021364020070097
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412719773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412719773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d6a319b955c74e878fdaf682a803b82ed1fdf1c787c9c51ef10f00e169cfd5973</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9ei980rGndT6gNqCVbdDmrmRKemkJplF_71TKrgQV3dxvu9cOIxdIlwjZvnNEiDFrMwhBRAAlThiI4QKkjKX4piN9nGyz0_ZWQhrAESZiREz923QniLxD-djqynwtuPLXYi0CdwZPnH91lLD566zbUfK80XQrbUqOh9u-bzfkG-1svyVQm9j4MZ5rjo-taTjkPAX15A9ZydG2UAXP3fM3h-mb5OnZLZ4fJ7czRKdYRmTplQZVquqKLTISQppGmVKmSoJ2Uqm1KBpDGohha50gWQQDABhWWnTFJXIxuzq0Lv17qunEOu16303vKzTHFOBlRDZQOGB0t6F4MnUW99ulN_VCPV-zvrPnIOTHpwwsN0n-d_m_6VvX013LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412719773</pqid></control><display><type>article</type><title>Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ruban, V. P.</creator><creatorcontrib>Ruban, V. P.</creatorcontrib><description>Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364020070097</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Arrays ; Atomic ; Biological and Medical Physics ; Biophysics ; Circuits ; Hydro- and Gas Dynamics ; Manifolds (mathematics) ; Molecular ; Nonlinear systems ; Optical and Plasma Physics ; Oscillators ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Plasma ; Quantum Information Technology ; Solid State Physics ; Spintronics ; Topology ; Toruses ; Vortices</subject><ispartof>JETP letters, 2020-04, Vol.111 (7), p.383-388</ispartof><rights>Pleiades Publishing, Inc. 2020</rights><rights>Pleiades Publishing, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d6a319b955c74e878fdaf682a803b82ed1fdf1c787c9c51ef10f00e169cfd5973</citedby><cites>FETCH-LOGICAL-c316t-d6a319b955c74e878fdaf682a803b82ed1fdf1c787c9c51ef10f00e169cfd5973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364020070097$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364020070097$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ruban, V. P.</creatorcontrib><title>Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).</description><subject>Arrays</subject><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Circuits</subject><subject>Hydro- and Gas Dynamics</subject><subject>Manifolds (mathematics)</subject><subject>Molecular</subject><subject>Nonlinear systems</subject><subject>Optical and Plasma Physics</subject><subject>Oscillators</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Quantum Information Technology</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Topology</subject><subject>Toruses</subject><subject>Vortices</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9ei980rGndT6gNqCVbdDmrmRKemkJplF_71TKrgQV3dxvu9cOIxdIlwjZvnNEiDFrMwhBRAAlThiI4QKkjKX4piN9nGyz0_ZWQhrAESZiREz923QniLxD-djqynwtuPLXYi0CdwZPnH91lLD566zbUfK80XQrbUqOh9u-bzfkG-1svyVQm9j4MZ5rjo-taTjkPAX15A9ZydG2UAXP3fM3h-mb5OnZLZ4fJ7czRKdYRmTplQZVquqKLTISQppGmVKmSoJ2Uqm1KBpDGohha50gWQQDABhWWnTFJXIxuzq0Lv17qunEOu16303vKzTHFOBlRDZQOGB0t6F4MnUW99ulN_VCPV-zvrPnIOTHpwwsN0n-d_m_6VvX013LQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ruban, V. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model</title><author>Ruban, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d6a319b955c74e878fdaf682a803b82ed1fdf1c787c9c51ef10f00e169cfd5973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arrays</topic><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Circuits</topic><topic>Hydro- and Gas Dynamics</topic><topic>Manifolds (mathematics)</topic><topic>Molecular</topic><topic>Nonlinear systems</topic><topic>Optical and Plasma Physics</topic><topic>Oscillators</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Quantum Information Technology</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Topology</topic><topic>Toruses</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruban, V. P.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruban, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>111</volume><issue>7</issue><spage>383</spage><epage>388</epage><pages>383-388</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364020070097</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2020-04, Vol.111 (7), p.383-388
issn 0021-3640
1090-6487
language eng
recordid cdi_proquest_journals_2412719773
source SpringerLink Journals - AutoHoldings
subjects Arrays
Atomic
Biological and Medical Physics
Biophysics
Circuits
Hydro- and Gas Dynamics
Manifolds (mathematics)
Molecular
Nonlinear systems
Optical and Plasma Physics
Oscillators
Particle and Nuclear Physics
Physics
Physics and Astronomy
Plasma
Quantum Information Technology
Solid State Physics
Spintronics
Topology
Toruses
Vortices
title Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Vortices%20in%20Systems%20of%20Coupled%20Nonlinear%20Oscillators:%20Numerical%20Results%20for%20an%20Electric%20Model&rft.jtitle=JETP%20letters&rft.au=Ruban,%20V.%20P.&rft.date=2020-04-01&rft.volume=111&rft.issue=7&rft.spage=383&rft.epage=388&rft.pages=383-388&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364020070097&rft_dat=%3Cproquest_cross%3E2412719773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412719773&rft_id=info:pmid/&rfr_iscdi=true