Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model
Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible p...
Gespeichert in:
Veröffentlicht in: | JETP letters 2020-04, Vol.111 (7), p.383-388 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 7 |
container_start_page | 383 |
container_title | JETP letters |
container_volume | 111 |
creator | Ruban, V. P. |
description | Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk). |
doi_str_mv | 10.1134/S0021364020070097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412719773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412719773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d6a319b955c74e878fdaf682a803b82ed1fdf1c787c9c51ef10f00e169cfd5973</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9ei980rGndT6gNqCVbdDmrmRKemkJplF_71TKrgQV3dxvu9cOIxdIlwjZvnNEiDFrMwhBRAAlThiI4QKkjKX4piN9nGyz0_ZWQhrAESZiREz923QniLxD-djqynwtuPLXYi0CdwZPnH91lLD566zbUfK80XQrbUqOh9u-bzfkG-1svyVQm9j4MZ5rjo-taTjkPAX15A9ZydG2UAXP3fM3h-mb5OnZLZ4fJ7czRKdYRmTplQZVquqKLTISQppGmVKmSoJ2Uqm1KBpDGohha50gWQQDABhWWnTFJXIxuzq0Lv17qunEOu16303vKzTHFOBlRDZQOGB0t6F4MnUW99ulN_VCPV-zvrPnIOTHpwwsN0n-d_m_6VvX013LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412719773</pqid></control><display><type>article</type><title>Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ruban, V. P.</creator><creatorcontrib>Ruban, V. P.</creatorcontrib><description>Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364020070097</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Arrays ; Atomic ; Biological and Medical Physics ; Biophysics ; Circuits ; Hydro- and Gas Dynamics ; Manifolds (mathematics) ; Molecular ; Nonlinear systems ; Optical and Plasma Physics ; Oscillators ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Plasma ; Quantum Information Technology ; Solid State Physics ; Spintronics ; Topology ; Toruses ; Vortices</subject><ispartof>JETP letters, 2020-04, Vol.111 (7), p.383-388</ispartof><rights>Pleiades Publishing, Inc. 2020</rights><rights>Pleiades Publishing, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d6a319b955c74e878fdaf682a803b82ed1fdf1c787c9c51ef10f00e169cfd5973</citedby><cites>FETCH-LOGICAL-c316t-d6a319b955c74e878fdaf682a803b82ed1fdf1c787c9c51ef10f00e169cfd5973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364020070097$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364020070097$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ruban, V. P.</creatorcontrib><title>Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).</description><subject>Arrays</subject><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Circuits</subject><subject>Hydro- and Gas Dynamics</subject><subject>Manifolds (mathematics)</subject><subject>Molecular</subject><subject>Nonlinear systems</subject><subject>Optical and Plasma Physics</subject><subject>Oscillators</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Quantum Information Technology</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Topology</subject><subject>Toruses</subject><subject>Vortices</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9ei980rGndT6gNqCVbdDmrmRKemkJplF_71TKrgQV3dxvu9cOIxdIlwjZvnNEiDFrMwhBRAAlThiI4QKkjKX4piN9nGyz0_ZWQhrAESZiREz923QniLxD-djqynwtuPLXYi0CdwZPnH91lLD566zbUfK80XQrbUqOh9u-bzfkG-1svyVQm9j4MZ5rjo-taTjkPAX15A9ZydG2UAXP3fM3h-mb5OnZLZ4fJ7czRKdYRmTplQZVquqKLTISQppGmVKmSoJ2Uqm1KBpDGohha50gWQQDABhWWnTFJXIxuzq0Lv17qunEOu16303vKzTHFOBlRDZQOGB0t6F4MnUW99ulN_VCPV-zvrPnIOTHpwwsN0n-d_m_6VvX013LQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ruban, V. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model</title><author>Ruban, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d6a319b955c74e878fdaf682a803b82ed1fdf1c787c9c51ef10f00e169cfd5973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arrays</topic><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Circuits</topic><topic>Hydro- and Gas Dynamics</topic><topic>Manifolds (mathematics)</topic><topic>Molecular</topic><topic>Nonlinear systems</topic><topic>Optical and Plasma Physics</topic><topic>Oscillators</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Quantum Information Technology</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Topology</topic><topic>Toruses</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruban, V. P.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruban, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>111</volume><issue>7</issue><spage>383</spage><epage>388</epage><pages>383-388</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364020070097</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-3640 |
ispartof | JETP letters, 2020-04, Vol.111 (7), p.383-388 |
issn | 0021-3640 1090-6487 |
language | eng |
recordid | cdi_proquest_journals_2412719773 |
source | SpringerLink Journals - AutoHoldings |
subjects | Arrays Atomic Biological and Medical Physics Biophysics Circuits Hydro- and Gas Dynamics Manifolds (mathematics) Molecular Nonlinear systems Optical and Plasma Physics Oscillators Particle and Nuclear Physics Physics Physics and Astronomy Plasma Quantum Information Technology Solid State Physics Spintronics Topology Toruses Vortices |
title | Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Vortices%20in%20Systems%20of%20Coupled%20Nonlinear%20Oscillators:%20Numerical%20Results%20for%20an%20Electric%20Model&rft.jtitle=JETP%20letters&rft.au=Ruban,%20V.%20P.&rft.date=2020-04-01&rft.volume=111&rft.issue=7&rft.spage=383&rft.epage=388&rft.pages=383-388&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364020070097&rft_dat=%3Cproquest_cross%3E2412719773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412719773&rft_id=info:pmid/&rfr_iscdi=true |