Improvement on a privacy-preserving outsourced classification protocol over encrypted data

In outsourced classification services, classifier owners outsource their classifiers to remote servers due to resource constraints, and users can request classification services from this server. What attracts us is that the users’ query data, classification results, and classifier privacy are all w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless networks 2020-08, Vol.26 (6), p.4363-4374
Hauptverfasser: Chai, Yanting, Zhan, Yu, Wang, Baocang, Ping, Yuan, Zhang, Zhili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4374
container_issue 6
container_start_page 4363
container_title Wireless networks
container_volume 26
creator Chai, Yanting
Zhan, Yu
Wang, Baocang
Ping, Yuan
Zhang, Zhili
description In outsourced classification services, classifier owners outsource their classifiers to remote servers due to resource constraints, and users can request classification services from this server. What attracts us is that the users’ query data, classification results, and classifier privacy are all well protected during classification. However, we introduce a threat model that makes it easy for adversaries to attack. Thus, to ensure its security, this model should be modified. In addition, considering the low efficiency of Paillier cryptosystem, the classification phase is accompanied by problems of low computational efficiency and large occupied bandwidth consumption. In this paper, we use a substitutive OU cryptosystem, which effectively saves computational and communication costs. Moreover, experimental results show that the improvement enhances the efficiency of the scheme and reduces the bandwidth consumption.
doi_str_mv 10.1007/s11276-020-02329-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412657969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412657969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6ac70f3f81268d16df9082d32a585358389a62e62a6404efe6a35956a94c8a513</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gk2WSToxT_FApe9OIlDNmkbGl31yQt9NubuoI3D8PM4ffezDxCbhncM4DmITHGG0WBQynBDTVnZMZkw6lmRp2XGTinAEJfkquUNgCghTEz8rncjXE4-J3vczX0FVZj7A7ojnSMPvl46Pp1NexzGvbR-bZyW0ypC53D3BW8aPPghm1VLGLlexePYy5YixmvyUXAbfI3v31OPp6f3hevdPX2slw8rqgTzGSq0DUQRNCMK90y1QYDmreCo9RSSC20QcW94qhqqH3wCoU0UqGpnUbJxJzcTb7lmK-9T9luyrF9WWl5XUxlY5QpFJ8oF4eUog-2PLrDeLQM7ClDO2VoS4b2J0N7EolJlArcr338s_5H9Q11DHU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412657969</pqid></control><display><type>article</type><title>Improvement on a privacy-preserving outsourced classification protocol over encrypted data</title><source>SpringerLink Journals</source><creator>Chai, Yanting ; Zhan, Yu ; Wang, Baocang ; Ping, Yuan ; Zhang, Zhili</creator><creatorcontrib>Chai, Yanting ; Zhan, Yu ; Wang, Baocang ; Ping, Yuan ; Zhang, Zhili</creatorcontrib><description>In outsourced classification services, classifier owners outsource their classifiers to remote servers due to resource constraints, and users can request classification services from this server. What attracts us is that the users’ query data, classification results, and classifier privacy are all well protected during classification. However, we introduce a threat model that makes it easy for adversaries to attack. Thus, to ensure its security, this model should be modified. In addition, considering the low efficiency of Paillier cryptosystem, the classification phase is accompanied by problems of low computational efficiency and large occupied bandwidth consumption. In this paper, we use a substitutive OU cryptosystem, which effectively saves computational and communication costs. Moreover, experimental results show that the improvement enhances the efficiency of the scheme and reduces the bandwidth consumption.</description><identifier>ISSN: 1022-0038</identifier><identifier>EISSN: 1572-8196</identifier><identifier>DOI: 10.1007/s11276-020-02329-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Classifiers ; Communications Engineering ; Computer Communication Networks ; Consumption ; Efficiency ; Electrical Engineering ; Encryption ; Engineering ; IT in Business ; Networks ; Outsourcing ; Privacy ; Wireless networks</subject><ispartof>Wireless networks, 2020-08, Vol.26 (6), p.4363-4374</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6ac70f3f81268d16df9082d32a585358389a62e62a6404efe6a35956a94c8a513</citedby><cites>FETCH-LOGICAL-c319t-6ac70f3f81268d16df9082d32a585358389a62e62a6404efe6a35956a94c8a513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11276-020-02329-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11276-020-02329-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chai, Yanting</creatorcontrib><creatorcontrib>Zhan, Yu</creatorcontrib><creatorcontrib>Wang, Baocang</creatorcontrib><creatorcontrib>Ping, Yuan</creatorcontrib><creatorcontrib>Zhang, Zhili</creatorcontrib><title>Improvement on a privacy-preserving outsourced classification protocol over encrypted data</title><title>Wireless networks</title><addtitle>Wireless Netw</addtitle><description>In outsourced classification services, classifier owners outsource their classifiers to remote servers due to resource constraints, and users can request classification services from this server. What attracts us is that the users’ query data, classification results, and classifier privacy are all well protected during classification. However, we introduce a threat model that makes it easy for adversaries to attack. Thus, to ensure its security, this model should be modified. In addition, considering the low efficiency of Paillier cryptosystem, the classification phase is accompanied by problems of low computational efficiency and large occupied bandwidth consumption. In this paper, we use a substitutive OU cryptosystem, which effectively saves computational and communication costs. Moreover, experimental results show that the improvement enhances the efficiency of the scheme and reduces the bandwidth consumption.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Consumption</subject><subject>Efficiency</subject><subject>Electrical Engineering</subject><subject>Encryption</subject><subject>Engineering</subject><subject>IT in Business</subject><subject>Networks</subject><subject>Outsourcing</subject><subject>Privacy</subject><subject>Wireless networks</subject><issn>1022-0038</issn><issn>1572-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gk2WSToxT_FApe9OIlDNmkbGl31yQt9NubuoI3D8PM4ffezDxCbhncM4DmITHGG0WBQynBDTVnZMZkw6lmRp2XGTinAEJfkquUNgCghTEz8rncjXE4-J3vczX0FVZj7A7ojnSMPvl46Pp1NexzGvbR-bZyW0ypC53D3BW8aPPghm1VLGLlexePYy5YixmvyUXAbfI3v31OPp6f3hevdPX2slw8rqgTzGSq0DUQRNCMK90y1QYDmreCo9RSSC20QcW94qhqqH3wCoU0UqGpnUbJxJzcTb7lmK-9T9luyrF9WWl5XUxlY5QpFJ8oF4eUog-2PLrDeLQM7ClDO2VoS4b2J0N7EolJlArcr338s_5H9Q11DHU4</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chai, Yanting</creator><creator>Zhan, Yu</creator><creator>Wang, Baocang</creator><creator>Ping, Yuan</creator><creator>Zhang, Zhili</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200801</creationdate><title>Improvement on a privacy-preserving outsourced classification protocol over encrypted data</title><author>Chai, Yanting ; Zhan, Yu ; Wang, Baocang ; Ping, Yuan ; Zhang, Zhili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6ac70f3f81268d16df9082d32a585358389a62e62a6404efe6a35956a94c8a513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Consumption</topic><topic>Efficiency</topic><topic>Electrical Engineering</topic><topic>Encryption</topic><topic>Engineering</topic><topic>IT in Business</topic><topic>Networks</topic><topic>Outsourcing</topic><topic>Privacy</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Yanting</creatorcontrib><creatorcontrib>Zhan, Yu</creatorcontrib><creatorcontrib>Wang, Baocang</creatorcontrib><creatorcontrib>Ping, Yuan</creatorcontrib><creatorcontrib>Zhang, Zhili</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chai, Yanting</au><au>Zhan, Yu</au><au>Wang, Baocang</au><au>Ping, Yuan</au><au>Zhang, Zhili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement on a privacy-preserving outsourced classification protocol over encrypted data</atitle><jtitle>Wireless networks</jtitle><stitle>Wireless Netw</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>26</volume><issue>6</issue><spage>4363</spage><epage>4374</epage><pages>4363-4374</pages><issn>1022-0038</issn><eissn>1572-8196</eissn><abstract>In outsourced classification services, classifier owners outsource their classifiers to remote servers due to resource constraints, and users can request classification services from this server. What attracts us is that the users’ query data, classification results, and classifier privacy are all well protected during classification. However, we introduce a threat model that makes it easy for adversaries to attack. Thus, to ensure its security, this model should be modified. In addition, considering the low efficiency of Paillier cryptosystem, the classification phase is accompanied by problems of low computational efficiency and large occupied bandwidth consumption. In this paper, we use a substitutive OU cryptosystem, which effectively saves computational and communication costs. Moreover, experimental results show that the improvement enhances the efficiency of the scheme and reduces the bandwidth consumption.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11276-020-02329-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-0038
ispartof Wireless networks, 2020-08, Vol.26 (6), p.4363-4374
issn 1022-0038
1572-8196
language eng
recordid cdi_proquest_journals_2412657969
source SpringerLink Journals
subjects Classification
Classifiers
Communications Engineering
Computer Communication Networks
Consumption
Efficiency
Electrical Engineering
Encryption
Engineering
IT in Business
Networks
Outsourcing
Privacy
Wireless networks
title Improvement on a privacy-preserving outsourced classification protocol over encrypted data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20on%20a%20privacy-preserving%20outsourced%20classification%20protocol%20over%20encrypted%20data&rft.jtitle=Wireless%20networks&rft.au=Chai,%20Yanting&rft.date=2020-08-01&rft.volume=26&rft.issue=6&rft.spage=4363&rft.epage=4374&rft.pages=4363-4374&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007/s11276-020-02329-9&rft_dat=%3Cproquest_cross%3E2412657969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412657969&rft_id=info:pmid/&rfr_iscdi=true