Probabilistic solutions of a variable-mass system under random excitations
The stationary probability density function (PDF) solution of a variable-mass system is calculated under Gaussian white noises and Poisson white noises, respectively. For small mass disturbance, the corresponding Fokker–Planck–Kolmogorov equation and Kolmogorov–Feller equation of the system are deri...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2020-07, Vol.231 (7), p.2815-2826 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2826 |
---|---|
container_issue | 7 |
container_start_page | 2815 |
container_title | Acta mechanica |
container_volume | 231 |
creator | Jiang, Wen-An Han, Xiu-Jing Chen, Li-Qun Bi, Qin-Sheng |
description | The stationary probability density function (PDF) solution of a variable-mass system is calculated under Gaussian white noises and Poisson white noises, respectively. For small mass disturbance, the corresponding Fokker–Planck–Kolmogorov equation and Kolmogorov–Feller equation of the system are derived. The solution procedure based on the exponential–polynomial closure (EPC) method is formulated to obtain and study the probabilistic solutions of the strongly nonlinear variable-mass system subjected to Gaussian white noises and Poisson white noises. Both odd and even nonlinear variable-mass systems are considered. Compared with Monte Carlo simulation results, good agreement is achieved with the EPC method in the case of sixth-order polynomial. For large mass disturbance, the PDFs and logarithmic PDFs of displacement and velocity are numerically calculated via the fourth-order Runge–Kutta algorithm. |
doi_str_mv | 10.1007/s00707-020-02674-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2412653103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626640955</galeid><sourcerecordid>A626640955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-fd22d13a6a0312f07e95d49fd28e5cd42ab97c61e440833ef2e2847b77f15283</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz1nznfa4LH6yoIe9h7RNlixtsyat2H9v3AreZJgJM7xPZngBuCV4RTBW9ykXrBCmOKdUHE1nYEEkKZEsmToHC4wxQaJU-BJcpXTIHVWcLMDrewyVqXzr0-BrmEI7Dj70CQYHDfw00ZuqtagzKcE0pcF2cOwbG2E0fRM6aL9qP5gTcg0unGmTvfl9l2D3-LDbPKPt29PLZr1FNRPFgFxDaUOYkQYzQh1WthQNL_O4sKJuODVVqWpJLOe4YMw6amnBVaWUI4IWbAnu5m-PMXyMNg36EMbY542ackKlYASzrFrNqr1prfa9C0M0dY7Gdr4OvXU-z9eSSslxKUQG6AzUMaQUrdPH6DsTJ02w_vFYzx7r7LE-eaynDLEZSlnc7238u-Uf6hv1hH9e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412653103</pqid></control><display><type>article</type><title>Probabilistic solutions of a variable-mass system under random excitations</title><source>SpringerNature Journals</source><creator>Jiang, Wen-An ; Han, Xiu-Jing ; Chen, Li-Qun ; Bi, Qin-Sheng</creator><creatorcontrib>Jiang, Wen-An ; Han, Xiu-Jing ; Chen, Li-Qun ; Bi, Qin-Sheng</creatorcontrib><description>The stationary probability density function (PDF) solution of a variable-mass system is calculated under Gaussian white noises and Poisson white noises, respectively. For small mass disturbance, the corresponding Fokker–Planck–Kolmogorov equation and Kolmogorov–Feller equation of the system are derived. The solution procedure based on the exponential–polynomial closure (EPC) method is formulated to obtain and study the probabilistic solutions of the strongly nonlinear variable-mass system subjected to Gaussian white noises and Poisson white noises. Both odd and even nonlinear variable-mass systems are considered. Compared with Monte Carlo simulation results, good agreement is achieved with the EPC method in the case of sixth-order polynomial. For large mass disturbance, the PDFs and logarithmic PDFs of displacement and velocity are numerically calculated via the fourth-order Runge–Kutta algorithm.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-020-02674-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Classical and Continuum Physics ; Comparative analysis ; Computer simulation ; Control ; Distribution (Probability theory) ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Monte Carlo method ; Monte Carlo simulation ; Nonlinear systems ; Original Paper ; Polynomials ; Probability density functions ; Runge-Kutta method ; Solid Mechanics ; Statistical analysis ; Theoretical and Applied Mechanics ; Variable mass systems ; Vibration</subject><ispartof>Acta mechanica, 2020-07, Vol.231 (7), p.2815-2826</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-fd22d13a6a0312f07e95d49fd28e5cd42ab97c61e440833ef2e2847b77f15283</citedby><cites>FETCH-LOGICAL-c358t-fd22d13a6a0312f07e95d49fd28e5cd42ab97c61e440833ef2e2847b77f15283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-020-02674-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-020-02674-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jiang, Wen-An</creatorcontrib><creatorcontrib>Han, Xiu-Jing</creatorcontrib><creatorcontrib>Chen, Li-Qun</creatorcontrib><creatorcontrib>Bi, Qin-Sheng</creatorcontrib><title>Probabilistic solutions of a variable-mass system under random excitations</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>The stationary probability density function (PDF) solution of a variable-mass system is calculated under Gaussian white noises and Poisson white noises, respectively. For small mass disturbance, the corresponding Fokker–Planck–Kolmogorov equation and Kolmogorov–Feller equation of the system are derived. The solution procedure based on the exponential–polynomial closure (EPC) method is formulated to obtain and study the probabilistic solutions of the strongly nonlinear variable-mass system subjected to Gaussian white noises and Poisson white noises. Both odd and even nonlinear variable-mass systems are considered. Compared with Monte Carlo simulation results, good agreement is achieved with the EPC method in the case of sixth-order polynomial. For large mass disturbance, the PDFs and logarithmic PDFs of displacement and velocity are numerically calculated via the fourth-order Runge–Kutta algorithm.</description><subject>Algorithms</subject><subject>Classical and Continuum Physics</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Distribution (Probability theory)</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Nonlinear systems</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Probability density functions</subject><subject>Runge-Kutta method</subject><subject>Solid Mechanics</subject><subject>Statistical analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Variable mass systems</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz1nznfa4LH6yoIe9h7RNlixtsyat2H9v3AreZJgJM7xPZngBuCV4RTBW9ykXrBCmOKdUHE1nYEEkKZEsmToHC4wxQaJU-BJcpXTIHVWcLMDrewyVqXzr0-BrmEI7Dj70CQYHDfw00ZuqtagzKcE0pcF2cOwbG2E0fRM6aL9qP5gTcg0unGmTvfl9l2D3-LDbPKPt29PLZr1FNRPFgFxDaUOYkQYzQh1WthQNL_O4sKJuODVVqWpJLOe4YMw6amnBVaWUI4IWbAnu5m-PMXyMNg36EMbY542ackKlYASzrFrNqr1prfa9C0M0dY7Gdr4OvXU-z9eSSslxKUQG6AzUMaQUrdPH6DsTJ02w_vFYzx7r7LE-eaynDLEZSlnc7238u-Uf6hv1hH9e</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Jiang, Wen-An</creator><creator>Han, Xiu-Jing</creator><creator>Chen, Li-Qun</creator><creator>Bi, Qin-Sheng</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20200701</creationdate><title>Probabilistic solutions of a variable-mass system under random excitations</title><author>Jiang, Wen-An ; Han, Xiu-Jing ; Chen, Li-Qun ; Bi, Qin-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-fd22d13a6a0312f07e95d49fd28e5cd42ab97c61e440833ef2e2847b77f15283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classical and Continuum Physics</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Distribution (Probability theory)</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Nonlinear systems</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Probability density functions</topic><topic>Runge-Kutta method</topic><topic>Solid Mechanics</topic><topic>Statistical analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Variable mass systems</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wen-An</creatorcontrib><creatorcontrib>Han, Xiu-Jing</creatorcontrib><creatorcontrib>Chen, Li-Qun</creatorcontrib><creatorcontrib>Bi, Qin-Sheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wen-An</au><au>Han, Xiu-Jing</au><au>Chen, Li-Qun</au><au>Bi, Qin-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic solutions of a variable-mass system under random excitations</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>231</volume><issue>7</issue><spage>2815</spage><epage>2826</epage><pages>2815-2826</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>The stationary probability density function (PDF) solution of a variable-mass system is calculated under Gaussian white noises and Poisson white noises, respectively. For small mass disturbance, the corresponding Fokker–Planck–Kolmogorov equation and Kolmogorov–Feller equation of the system are derived. The solution procedure based on the exponential–polynomial closure (EPC) method is formulated to obtain and study the probabilistic solutions of the strongly nonlinear variable-mass system subjected to Gaussian white noises and Poisson white noises. Both odd and even nonlinear variable-mass systems are considered. Compared with Monte Carlo simulation results, good agreement is achieved with the EPC method in the case of sixth-order polynomial. For large mass disturbance, the PDFs and logarithmic PDFs of displacement and velocity are numerically calculated via the fourth-order Runge–Kutta algorithm.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-020-02674-y</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2020-07, Vol.231 (7), p.2815-2826 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2412653103 |
source | SpringerNature Journals |
subjects | Algorithms Classical and Continuum Physics Comparative analysis Computer simulation Control Distribution (Probability theory) Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Monte Carlo method Monte Carlo simulation Nonlinear systems Original Paper Polynomials Probability density functions Runge-Kutta method Solid Mechanics Statistical analysis Theoretical and Applied Mechanics Variable mass systems Vibration |
title | Probabilistic solutions of a variable-mass system under random excitations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20solutions%20of%20a%20variable-mass%20system%20under%20random%20excitations&rft.jtitle=Acta%20mechanica&rft.au=Jiang,%20Wen-An&rft.date=2020-07-01&rft.volume=231&rft.issue=7&rft.spage=2815&rft.epage=2826&rft.pages=2815-2826&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-020-02674-y&rft_dat=%3Cgale_proqu%3EA626640955%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412653103&rft_id=info:pmid/&rft_galeid=A626640955&rfr_iscdi=true |