Probabilistic solutions of a variable-mass system under random excitations

The stationary probability density function (PDF) solution of a variable-mass system is calculated under Gaussian white noises and Poisson white noises, respectively. For small mass disturbance, the corresponding Fokker–Planck–Kolmogorov equation and Kolmogorov–Feller equation of the system are deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2020-07, Vol.231 (7), p.2815-2826
Hauptverfasser: Jiang, Wen-An, Han, Xiu-Jing, Chen, Li-Qun, Bi, Qin-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2826
container_issue 7
container_start_page 2815
container_title Acta mechanica
container_volume 231
creator Jiang, Wen-An
Han, Xiu-Jing
Chen, Li-Qun
Bi, Qin-Sheng
description The stationary probability density function (PDF) solution of a variable-mass system is calculated under Gaussian white noises and Poisson white noises, respectively. For small mass disturbance, the corresponding Fokker–Planck–Kolmogorov equation and Kolmogorov–Feller equation of the system are derived. The solution procedure based on the exponential–polynomial closure (EPC) method is formulated to obtain and study the probabilistic solutions of the strongly nonlinear variable-mass system subjected to Gaussian white noises and Poisson white noises. Both odd and even nonlinear variable-mass systems are considered. Compared with Monte Carlo simulation results, good agreement is achieved with the EPC method in the case of sixth-order polynomial. For large mass disturbance, the PDFs and logarithmic PDFs of displacement and velocity are numerically calculated via the fourth-order Runge–Kutta algorithm.
doi_str_mv 10.1007/s00707-020-02674-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2412653103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626640955</galeid><sourcerecordid>A626640955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-fd22d13a6a0312f07e95d49fd28e5cd42ab97c61e440833ef2e2847b77f15283</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz1nznfa4LH6yoIe9h7RNlixtsyat2H9v3AreZJgJM7xPZngBuCV4RTBW9ykXrBCmOKdUHE1nYEEkKZEsmToHC4wxQaJU-BJcpXTIHVWcLMDrewyVqXzr0-BrmEI7Dj70CQYHDfw00ZuqtagzKcE0pcF2cOwbG2E0fRM6aL9qP5gTcg0unGmTvfl9l2D3-LDbPKPt29PLZr1FNRPFgFxDaUOYkQYzQh1WthQNL_O4sKJuODVVqWpJLOe4YMw6amnBVaWUI4IWbAnu5m-PMXyMNg36EMbY542ackKlYASzrFrNqr1prfa9C0M0dY7Gdr4OvXU-z9eSSslxKUQG6AzUMaQUrdPH6DsTJ02w_vFYzx7r7LE-eaynDLEZSlnc7238u-Uf6hv1hH9e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412653103</pqid></control><display><type>article</type><title>Probabilistic solutions of a variable-mass system under random excitations</title><source>SpringerNature Journals</source><creator>Jiang, Wen-An ; Han, Xiu-Jing ; Chen, Li-Qun ; Bi, Qin-Sheng</creator><creatorcontrib>Jiang, Wen-An ; Han, Xiu-Jing ; Chen, Li-Qun ; Bi, Qin-Sheng</creatorcontrib><description>The stationary probability density function (PDF) solution of a variable-mass system is calculated under Gaussian white noises and Poisson white noises, respectively. For small mass disturbance, the corresponding Fokker–Planck–Kolmogorov equation and Kolmogorov–Feller equation of the system are derived. The solution procedure based on the exponential–polynomial closure (EPC) method is formulated to obtain and study the probabilistic solutions of the strongly nonlinear variable-mass system subjected to Gaussian white noises and Poisson white noises. Both odd and even nonlinear variable-mass systems are considered. Compared with Monte Carlo simulation results, good agreement is achieved with the EPC method in the case of sixth-order polynomial. For large mass disturbance, the PDFs and logarithmic PDFs of displacement and velocity are numerically calculated via the fourth-order Runge–Kutta algorithm.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-020-02674-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Classical and Continuum Physics ; Comparative analysis ; Computer simulation ; Control ; Distribution (Probability theory) ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Monte Carlo method ; Monte Carlo simulation ; Nonlinear systems ; Original Paper ; Polynomials ; Probability density functions ; Runge-Kutta method ; Solid Mechanics ; Statistical analysis ; Theoretical and Applied Mechanics ; Variable mass systems ; Vibration</subject><ispartof>Acta mechanica, 2020-07, Vol.231 (7), p.2815-2826</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-fd22d13a6a0312f07e95d49fd28e5cd42ab97c61e440833ef2e2847b77f15283</citedby><cites>FETCH-LOGICAL-c358t-fd22d13a6a0312f07e95d49fd28e5cd42ab97c61e440833ef2e2847b77f15283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-020-02674-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-020-02674-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jiang, Wen-An</creatorcontrib><creatorcontrib>Han, Xiu-Jing</creatorcontrib><creatorcontrib>Chen, Li-Qun</creatorcontrib><creatorcontrib>Bi, Qin-Sheng</creatorcontrib><title>Probabilistic solutions of a variable-mass system under random excitations</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>The stationary probability density function (PDF) solution of a variable-mass system is calculated under Gaussian white noises and Poisson white noises, respectively. For small mass disturbance, the corresponding Fokker–Planck–Kolmogorov equation and Kolmogorov–Feller equation of the system are derived. The solution procedure based on the exponential–polynomial closure (EPC) method is formulated to obtain and study the probabilistic solutions of the strongly nonlinear variable-mass system subjected to Gaussian white noises and Poisson white noises. Both odd and even nonlinear variable-mass systems are considered. Compared with Monte Carlo simulation results, good agreement is achieved with the EPC method in the case of sixth-order polynomial. For large mass disturbance, the PDFs and logarithmic PDFs of displacement and velocity are numerically calculated via the fourth-order Runge–Kutta algorithm.</description><subject>Algorithms</subject><subject>Classical and Continuum Physics</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Distribution (Probability theory)</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Nonlinear systems</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Probability density functions</subject><subject>Runge-Kutta method</subject><subject>Solid Mechanics</subject><subject>Statistical analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Variable mass systems</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz1nznfa4LH6yoIe9h7RNlixtsyat2H9v3AreZJgJM7xPZngBuCV4RTBW9ykXrBCmOKdUHE1nYEEkKZEsmToHC4wxQaJU-BJcpXTIHVWcLMDrewyVqXzr0-BrmEI7Dj70CQYHDfw00ZuqtagzKcE0pcF2cOwbG2E0fRM6aL9qP5gTcg0unGmTvfl9l2D3-LDbPKPt29PLZr1FNRPFgFxDaUOYkQYzQh1WthQNL_O4sKJuODVVqWpJLOe4YMw6amnBVaWUI4IWbAnu5m-PMXyMNg36EMbY542ackKlYASzrFrNqr1prfa9C0M0dY7Gdr4OvXU-z9eSSslxKUQG6AzUMaQUrdPH6DsTJ02w_vFYzx7r7LE-eaynDLEZSlnc7238u-Uf6hv1hH9e</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Jiang, Wen-An</creator><creator>Han, Xiu-Jing</creator><creator>Chen, Li-Qun</creator><creator>Bi, Qin-Sheng</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20200701</creationdate><title>Probabilistic solutions of a variable-mass system under random excitations</title><author>Jiang, Wen-An ; Han, Xiu-Jing ; Chen, Li-Qun ; Bi, Qin-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-fd22d13a6a0312f07e95d49fd28e5cd42ab97c61e440833ef2e2847b77f15283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classical and Continuum Physics</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Distribution (Probability theory)</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Nonlinear systems</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Probability density functions</topic><topic>Runge-Kutta method</topic><topic>Solid Mechanics</topic><topic>Statistical analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Variable mass systems</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wen-An</creatorcontrib><creatorcontrib>Han, Xiu-Jing</creatorcontrib><creatorcontrib>Chen, Li-Qun</creatorcontrib><creatorcontrib>Bi, Qin-Sheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wen-An</au><au>Han, Xiu-Jing</au><au>Chen, Li-Qun</au><au>Bi, Qin-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic solutions of a variable-mass system under random excitations</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>231</volume><issue>7</issue><spage>2815</spage><epage>2826</epage><pages>2815-2826</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>The stationary probability density function (PDF) solution of a variable-mass system is calculated under Gaussian white noises and Poisson white noises, respectively. For small mass disturbance, the corresponding Fokker–Planck–Kolmogorov equation and Kolmogorov–Feller equation of the system are derived. The solution procedure based on the exponential–polynomial closure (EPC) method is formulated to obtain and study the probabilistic solutions of the strongly nonlinear variable-mass system subjected to Gaussian white noises and Poisson white noises. Both odd and even nonlinear variable-mass systems are considered. Compared with Monte Carlo simulation results, good agreement is achieved with the EPC method in the case of sixth-order polynomial. For large mass disturbance, the PDFs and logarithmic PDFs of displacement and velocity are numerically calculated via the fourth-order Runge–Kutta algorithm.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-020-02674-y</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2020-07, Vol.231 (7), p.2815-2826
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_2412653103
source SpringerNature Journals
subjects Algorithms
Classical and Continuum Physics
Comparative analysis
Computer simulation
Control
Distribution (Probability theory)
Dynamical Systems
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Monte Carlo method
Monte Carlo simulation
Nonlinear systems
Original Paper
Polynomials
Probability density functions
Runge-Kutta method
Solid Mechanics
Statistical analysis
Theoretical and Applied Mechanics
Variable mass systems
Vibration
title Probabilistic solutions of a variable-mass system under random excitations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20solutions%20of%20a%20variable-mass%20system%20under%20random%20excitations&rft.jtitle=Acta%20mechanica&rft.au=Jiang,%20Wen-An&rft.date=2020-07-01&rft.volume=231&rft.issue=7&rft.spage=2815&rft.epage=2826&rft.pages=2815-2826&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-020-02674-y&rft_dat=%3Cgale_proqu%3EA626640955%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412653103&rft_id=info:pmid/&rft_galeid=A626640955&rfr_iscdi=true