Regular Two-Distance Sets

This paper makes a deep study of regular two-distance sets. A set of unit vectors X in Euclidean space R n is said to be regular two-distance set if the inner product of any pair of its vectors is either α or β , and the number of α ’s (and hence β ’s) on each row of the Gram matrix of X is the same...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2020-06, Vol.26 (3), Article 49
Hauptverfasser: Casazza, Peter G., Tran, Tin T., Tremain, Janet C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 26
creator Casazza, Peter G.
Tran, Tin T.
Tremain, Janet C.
description This paper makes a deep study of regular two-distance sets. A set of unit vectors X in Euclidean space R n is said to be regular two-distance set if the inner product of any pair of its vectors is either α or β , and the number of α ’s (and hence β ’s) on each row of the Gram matrix of X is the same. We present various properties of these sets as well as focus on the case where they form tight frames for the underlying space. We then give some constructions of regular two-distance sets, in particular, two-distance frames, both tight and non-tight cases. We also supply an example of a non-tight maximal two-distance frame. Connections among two-distance sets, equiangular lines, and quasi-symmetric designs are also discussed. For instance, we give a sufficient condition for constructing sets of equiangular lines from regular two-distance sets, especially from quasi-symmetric designs satisfying certain conditions.
doi_str_mv 10.1007/s00041-020-09756-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2412557286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718413600</galeid><sourcerecordid>A718413600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-309b33912b9b7b8837c2bce70bcb86f4e081e9aeecdfae85f1556b988cf24ad93</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfQE8Fz6mTZLNJjqX-hYKg9RySdFK2tLs12SJ-e6MreJM5zGN4v5nhEXLFYMoA1E0GgIpR4EDBKFnT6oiMmBSMSi3ZcdFQm6Jrc0rOct4AcCaUGJHLF1wfti5Nlh8dvW1y79qAk1fs8zk5iW6b8eK3j8nb_d1y_kgXzw9P89mCBiF1TwUYL4Rh3BuvvNZCBe4DKvDB6zpWCJqhcYhhFR1qGZmUtTdah8grtzJiTK6HvfvUvR8w93bTHVJbTlpeMS6l4rourungWrst2qaNXZ9cKLXCXRO6FmNT5jPFdMVEDVAAPgAhdTknjHafmp1Ln5aB_c7MDpnZkpn9ycxWBRIDlIu5XWP6--Uf6gs2IWyO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412557286</pqid></control><display><type>article</type><title>Regular Two-Distance Sets</title><source>SpringerNature Complete Journals</source><creator>Casazza, Peter G. ; Tran, Tin T. ; Tremain, Janet C.</creator><creatorcontrib>Casazza, Peter G. ; Tran, Tin T. ; Tremain, Janet C.</creatorcontrib><description>This paper makes a deep study of regular two-distance sets. A set of unit vectors X in Euclidean space R n is said to be regular two-distance set if the inner product of any pair of its vectors is either α or β , and the number of α ’s (and hence β ’s) on each row of the Gram matrix of X is the same. We present various properties of these sets as well as focus on the case where they form tight frames for the underlying space. We then give some constructions of regular two-distance sets, in particular, two-distance frames, both tight and non-tight cases. We also supply an example of a non-tight maximal two-distance frame. Connections among two-distance sets, equiangular lines, and quasi-symmetric designs are also discussed. For instance, we give a sufficient condition for constructing sets of equiangular lines from regular two-distance sets, especially from quasi-symmetric designs satisfying certain conditions.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-020-09756-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Euclidean geometry ; Euclidean space ; Fourier Analysis ; Mathematical analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing ; Vectors (mathematics)</subject><ispartof>The Journal of fourier analysis and applications, 2020-06, Vol.26 (3), Article 49</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-309b33912b9b7b8837c2bce70bcb86f4e081e9aeecdfae85f1556b988cf24ad93</citedby><cites>FETCH-LOGICAL-c358t-309b33912b9b7b8837c2bce70bcb86f4e081e9aeecdfae85f1556b988cf24ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-020-09756-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-020-09756-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Casazza, Peter G.</creatorcontrib><creatorcontrib>Tran, Tin T.</creatorcontrib><creatorcontrib>Tremain, Janet C.</creatorcontrib><title>Regular Two-Distance Sets</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>This paper makes a deep study of regular two-distance sets. A set of unit vectors X in Euclidean space R n is said to be regular two-distance set if the inner product of any pair of its vectors is either α or β , and the number of α ’s (and hence β ’s) on each row of the Gram matrix of X is the same. We present various properties of these sets as well as focus on the case where they form tight frames for the underlying space. We then give some constructions of regular two-distance sets, in particular, two-distance frames, both tight and non-tight cases. We also supply an example of a non-tight maximal two-distance frame. Connections among two-distance sets, equiangular lines, and quasi-symmetric designs are also discussed. For instance, we give a sufficient condition for constructing sets of equiangular lines from regular two-distance sets, especially from quasi-symmetric designs satisfying certain conditions.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Fourier Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><subject>Vectors (mathematics)</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfQE8Fz6mTZLNJjqX-hYKg9RySdFK2tLs12SJ-e6MreJM5zGN4v5nhEXLFYMoA1E0GgIpR4EDBKFnT6oiMmBSMSi3ZcdFQm6Jrc0rOct4AcCaUGJHLF1wfti5Nlh8dvW1y79qAk1fs8zk5iW6b8eK3j8nb_d1y_kgXzw9P89mCBiF1TwUYL4Rh3BuvvNZCBe4DKvDB6zpWCJqhcYhhFR1qGZmUtTdah8grtzJiTK6HvfvUvR8w93bTHVJbTlpeMS6l4rourungWrst2qaNXZ9cKLXCXRO6FmNT5jPFdMVEDVAAPgAhdTknjHafmp1Ln5aB_c7MDpnZkpn9ycxWBRIDlIu5XWP6--Uf6gs2IWyO</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Casazza, Peter G.</creator><creator>Tran, Tin T.</creator><creator>Tremain, Janet C.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>Regular Two-Distance Sets</title><author>Casazza, Peter G. ; Tran, Tin T. ; Tremain, Janet C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-309b33912b9b7b8837c2bce70bcb86f4e081e9aeecdfae85f1556b988cf24ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Fourier Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casazza, Peter G.</creatorcontrib><creatorcontrib>Tran, Tin T.</creatorcontrib><creatorcontrib>Tremain, Janet C.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casazza, Peter G.</au><au>Tran, Tin T.</au><au>Tremain, Janet C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regular Two-Distance Sets</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>26</volume><issue>3</issue><artnum>49</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>This paper makes a deep study of regular two-distance sets. A set of unit vectors X in Euclidean space R n is said to be regular two-distance set if the inner product of any pair of its vectors is either α or β , and the number of α ’s (and hence β ’s) on each row of the Gram matrix of X is the same. We present various properties of these sets as well as focus on the case where they form tight frames for the underlying space. We then give some constructions of regular two-distance sets, in particular, two-distance frames, both tight and non-tight cases. We also supply an example of a non-tight maximal two-distance frame. Connections among two-distance sets, equiangular lines, and quasi-symmetric designs are also discussed. For instance, we give a sufficient condition for constructing sets of equiangular lines from regular two-distance sets, especially from quasi-symmetric designs satisfying certain conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-020-09756-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2020-06, Vol.26 (3), Article 49
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_2412557286
source SpringerNature Complete Journals
subjects Abstract Harmonic Analysis
Approximations and Expansions
Euclidean geometry
Euclidean space
Fourier Analysis
Mathematical analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Signal,Image and Speech Processing
Vectors (mathematics)
title Regular Two-Distance Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regular%20Two-Distance%20Sets&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Casazza,%20Peter%20G.&rft.date=2020-06-01&rft.volume=26&rft.issue=3&rft.artnum=49&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-020-09756-4&rft_dat=%3Cgale_proqu%3EA718413600%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412557286&rft_id=info:pmid/&rft_galeid=A718413600&rfr_iscdi=true