Grouped Generalized Estimating Equations for Longitudinal Data Analysis
Generalized estimating equation (GEE) is widely adopted for regression modeling for longitudinal data, taking account of potential correlations within the same subjects. Although the standard GEE assumes common regression coefficients among all the subjects, such an assumption may not be realistic w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ito, Tsubasa Sugasawa, Shonosuke |
description | Generalized estimating equation (GEE) is widely adopted for regression modeling for longitudinal data, taking account of potential correlations within the same subjects. Although the standard GEE assumes common regression coefficients among all the subjects, such an assumption may not be realistic when there is potential heterogeneity in regression coefficients among subjects. In this paper, we develop a flexible and interpretable approach, called grouped GEE analysis, to modeling longitudinal data with allowing heterogeneity in regression coefficients. The proposed method assumes that the subjects are divided into a finite number of groups and subjects within the same group share the same regression coefficient. We provide a simple algorithm for grouping subjects and estimating the regression coefficients simultaneously, and show the asymptotic properties of the proposed estimator. The number of groups can be determined by the cross-validation with averaging method. We demonstrate the proposed method through simulation studies and an application to a real dataset. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2412427373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412427373</sourcerecordid><originalsourceid>FETCH-proquest_journals_24124273733</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_EMTZxJ4LeBqtNbB0Z00oZASbKGvHfTr7eAHON0z3A3JgLGqOHGAHckRp7IsoWmhrllGpPQuLrqnUlvt1Ww-yQKDealg7EjFGhOcRTo4Tx_OjibE3lg106sKip6T3mjwQLaDmlHnv-7J8Sael3uxeLdGjaGbXPRpxg54BRxa1jL23_UFLUs77w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412427373</pqid></control><display><type>article</type><title>Grouped Generalized Estimating Equations for Longitudinal Data Analysis</title><source>Free E- Journals</source><creator>Ito, Tsubasa ; Sugasawa, Shonosuke</creator><creatorcontrib>Ito, Tsubasa ; Sugasawa, Shonosuke</creatorcontrib><description>Generalized estimating equation (GEE) is widely adopted for regression modeling for longitudinal data, taking account of potential correlations within the same subjects. Although the standard GEE assumes common regression coefficients among all the subjects, such an assumption may not be realistic when there is potential heterogeneity in regression coefficients among subjects. In this paper, we develop a flexible and interpretable approach, called grouped GEE analysis, to modeling longitudinal data with allowing heterogeneity in regression coefficients. The proposed method assumes that the subjects are divided into a finite number of groups and subjects within the same group share the same regression coefficient. We provide a simple algorithm for grouping subjects and estimating the regression coefficients simultaneously, and show the asymptotic properties of the proposed estimator. The number of groups can be determined by the cross-validation with averaging method. We demonstrate the proposed method through simulation studies and an application to a real dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Asymptotic properties ; Computer simulation ; Estimation ; Heterogeneity ; Mathematical models ; Modelling ; Regression analysis ; Regression coefficients</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ito, Tsubasa</creatorcontrib><creatorcontrib>Sugasawa, Shonosuke</creatorcontrib><title>Grouped Generalized Estimating Equations for Longitudinal Data Analysis</title><title>arXiv.org</title><description>Generalized estimating equation (GEE) is widely adopted for regression modeling for longitudinal data, taking account of potential correlations within the same subjects. Although the standard GEE assumes common regression coefficients among all the subjects, such an assumption may not be realistic when there is potential heterogeneity in regression coefficients among subjects. In this paper, we develop a flexible and interpretable approach, called grouped GEE analysis, to modeling longitudinal data with allowing heterogeneity in regression coefficients. The proposed method assumes that the subjects are divided into a finite number of groups and subjects within the same group share the same regression coefficient. We provide a simple algorithm for grouping subjects and estimating the regression coefficients simultaneously, and show the asymptotic properties of the proposed estimator. The number of groups can be determined by the cross-validation with averaging method. We demonstrate the proposed method through simulation studies and an application to a real dataset.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Estimation</subject><subject>Heterogeneity</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_EMTZxJ4LeBqtNbB0Z00oZASbKGvHfTr7eAHON0z3A3JgLGqOHGAHckRp7IsoWmhrllGpPQuLrqnUlvt1Ww-yQKDealg7EjFGhOcRTo4Tx_OjibE3lg106sKip6T3mjwQLaDmlHnv-7J8Sael3uxeLdGjaGbXPRpxg54BRxa1jL23_UFLUs77w</recordid><startdate>20220708</startdate><enddate>20220708</enddate><creator>Ito, Tsubasa</creator><creator>Sugasawa, Shonosuke</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220708</creationdate><title>Grouped Generalized Estimating Equations for Longitudinal Data Analysis</title><author>Ito, Tsubasa ; Sugasawa, Shonosuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24124273733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Estimation</topic><topic>Heterogeneity</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Ito, Tsubasa</creatorcontrib><creatorcontrib>Sugasawa, Shonosuke</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Tsubasa</au><au>Sugasawa, Shonosuke</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Grouped Generalized Estimating Equations for Longitudinal Data Analysis</atitle><jtitle>arXiv.org</jtitle><date>2022-07-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Generalized estimating equation (GEE) is widely adopted for regression modeling for longitudinal data, taking account of potential correlations within the same subjects. Although the standard GEE assumes common regression coefficients among all the subjects, such an assumption may not be realistic when there is potential heterogeneity in regression coefficients among subjects. In this paper, we develop a flexible and interpretable approach, called grouped GEE analysis, to modeling longitudinal data with allowing heterogeneity in regression coefficients. The proposed method assumes that the subjects are divided into a finite number of groups and subjects within the same group share the same regression coefficient. We provide a simple algorithm for grouping subjects and estimating the regression coefficients simultaneously, and show the asymptotic properties of the proposed estimator. The number of groups can be determined by the cross-validation with averaging method. We demonstrate the proposed method through simulation studies and an application to a real dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2412427373 |
source | Free E- Journals |
subjects | Algorithms Asymptotic properties Computer simulation Estimation Heterogeneity Mathematical models Modelling Regression analysis Regression coefficients |
title | Grouped Generalized Estimating Equations for Longitudinal Data Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Grouped%20Generalized%20Estimating%20Equations%20for%20Longitudinal%20Data%20Analysis&rft.jtitle=arXiv.org&rft.au=Ito,%20Tsubasa&rft.date=2022-07-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2412427373%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412427373&rft_id=info:pmid/&rfr_iscdi=true |