Grouped Generalized Estimating Equations for Longitudinal Data Analysis

Generalized estimating equation (GEE) is widely adopted for regression modeling for longitudinal data, taking account of potential correlations within the same subjects. Although the standard GEE assumes common regression coefficients among all the subjects, such an assumption may not be realistic w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-07
Hauptverfasser: Ito, Tsubasa, Sugasawa, Shonosuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ito, Tsubasa
Sugasawa, Shonosuke
description Generalized estimating equation (GEE) is widely adopted for regression modeling for longitudinal data, taking account of potential correlations within the same subjects. Although the standard GEE assumes common regression coefficients among all the subjects, such an assumption may not be realistic when there is potential heterogeneity in regression coefficients among subjects. In this paper, we develop a flexible and interpretable approach, called grouped GEE analysis, to modeling longitudinal data with allowing heterogeneity in regression coefficients. The proposed method assumes that the subjects are divided into a finite number of groups and subjects within the same group share the same regression coefficient. We provide a simple algorithm for grouping subjects and estimating the regression coefficients simultaneously, and show the asymptotic properties of the proposed estimator. The number of groups can be determined by the cross-validation with averaging method. We demonstrate the proposed method through simulation studies and an application to a real dataset.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2412427373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412427373</sourcerecordid><originalsourceid>FETCH-proquest_journals_24124273733</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_EMTZxJ4LeBqtNbB0Z00oZASbKGvHfTr7eAHON0z3A3JgLGqOHGAHckRp7IsoWmhrllGpPQuLrqnUlvt1Ww-yQKDealg7EjFGhOcRTo4Tx_OjibE3lg106sKip6T3mjwQLaDmlHnv-7J8Sael3uxeLdGjaGbXPRpxg54BRxa1jL23_UFLUs77w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412427373</pqid></control><display><type>article</type><title>Grouped Generalized Estimating Equations for Longitudinal Data Analysis</title><source>Free E- Journals</source><creator>Ito, Tsubasa ; Sugasawa, Shonosuke</creator><creatorcontrib>Ito, Tsubasa ; Sugasawa, Shonosuke</creatorcontrib><description>Generalized estimating equation (GEE) is widely adopted for regression modeling for longitudinal data, taking account of potential correlations within the same subjects. Although the standard GEE assumes common regression coefficients among all the subjects, such an assumption may not be realistic when there is potential heterogeneity in regression coefficients among subjects. In this paper, we develop a flexible and interpretable approach, called grouped GEE analysis, to modeling longitudinal data with allowing heterogeneity in regression coefficients. The proposed method assumes that the subjects are divided into a finite number of groups and subjects within the same group share the same regression coefficient. We provide a simple algorithm for grouping subjects and estimating the regression coefficients simultaneously, and show the asymptotic properties of the proposed estimator. The number of groups can be determined by the cross-validation with averaging method. We demonstrate the proposed method through simulation studies and an application to a real dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Asymptotic properties ; Computer simulation ; Estimation ; Heterogeneity ; Mathematical models ; Modelling ; Regression analysis ; Regression coefficients</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ito, Tsubasa</creatorcontrib><creatorcontrib>Sugasawa, Shonosuke</creatorcontrib><title>Grouped Generalized Estimating Equations for Longitudinal Data Analysis</title><title>arXiv.org</title><description>Generalized estimating equation (GEE) is widely adopted for regression modeling for longitudinal data, taking account of potential correlations within the same subjects. Although the standard GEE assumes common regression coefficients among all the subjects, such an assumption may not be realistic when there is potential heterogeneity in regression coefficients among subjects. In this paper, we develop a flexible and interpretable approach, called grouped GEE analysis, to modeling longitudinal data with allowing heterogeneity in regression coefficients. The proposed method assumes that the subjects are divided into a finite number of groups and subjects within the same group share the same regression coefficient. We provide a simple algorithm for grouping subjects and estimating the regression coefficients simultaneously, and show the asymptotic properties of the proposed estimator. The number of groups can be determined by the cross-validation with averaging method. We demonstrate the proposed method through simulation studies and an application to a real dataset.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Estimation</subject><subject>Heterogeneity</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_EMTZxJ4LeBqtNbB0Z00oZASbKGvHfTr7eAHON0z3A3JgLGqOHGAHckRp7IsoWmhrllGpPQuLrqnUlvt1Ww-yQKDealg7EjFGhOcRTo4Tx_OjibE3lg106sKip6T3mjwQLaDmlHnv-7J8Sael3uxeLdGjaGbXPRpxg54BRxa1jL23_UFLUs77w</recordid><startdate>20220708</startdate><enddate>20220708</enddate><creator>Ito, Tsubasa</creator><creator>Sugasawa, Shonosuke</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220708</creationdate><title>Grouped Generalized Estimating Equations for Longitudinal Data Analysis</title><author>Ito, Tsubasa ; Sugasawa, Shonosuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24124273733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Estimation</topic><topic>Heterogeneity</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Ito, Tsubasa</creatorcontrib><creatorcontrib>Sugasawa, Shonosuke</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Tsubasa</au><au>Sugasawa, Shonosuke</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Grouped Generalized Estimating Equations for Longitudinal Data Analysis</atitle><jtitle>arXiv.org</jtitle><date>2022-07-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Generalized estimating equation (GEE) is widely adopted for regression modeling for longitudinal data, taking account of potential correlations within the same subjects. Although the standard GEE assumes common regression coefficients among all the subjects, such an assumption may not be realistic when there is potential heterogeneity in regression coefficients among subjects. In this paper, we develop a flexible and interpretable approach, called grouped GEE analysis, to modeling longitudinal data with allowing heterogeneity in regression coefficients. The proposed method assumes that the subjects are divided into a finite number of groups and subjects within the same group share the same regression coefficient. We provide a simple algorithm for grouping subjects and estimating the regression coefficients simultaneously, and show the asymptotic properties of the proposed estimator. The number of groups can be determined by the cross-validation with averaging method. We demonstrate the proposed method through simulation studies and an application to a real dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2412427373
source Free E- Journals
subjects Algorithms
Asymptotic properties
Computer simulation
Estimation
Heterogeneity
Mathematical models
Modelling
Regression analysis
Regression coefficients
title Grouped Generalized Estimating Equations for Longitudinal Data Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Grouped%20Generalized%20Estimating%20Equations%20for%20Longitudinal%20Data%20Analysis&rft.jtitle=arXiv.org&rft.au=Ito,%20Tsubasa&rft.date=2022-07-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2412427373%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412427373&rft_id=info:pmid/&rfr_iscdi=true