Hybrid Methods for Short-Term Traffic Flow Prediction Based on ARIMA-GARCH Model and Wavelet Neural Network
AbstractAccurate short-term traffic flow prediction is essential for real-time traffic control. A linear hybrid method and a nonlinear hybrid method for short-term traffic flow prediction are proposed with vehicle type as one concern. Traffic flow data are divided into the similar, volatile, and irr...
Gespeichert in:
Veröffentlicht in: | Journal of transportation engineering, Part A Part A, 2020-08, Vol.146 (8) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of transportation engineering, Part A |
container_volume | 146 |
creator | Yao, Ronghan Zhang, Wensong Zhang, Lihui |
description | AbstractAccurate short-term traffic flow prediction is essential for real-time traffic control. A linear hybrid method and a nonlinear hybrid method for short-term traffic flow prediction are proposed with vehicle type as one concern. Traffic flow data are divided into the similar, volatile, and irregular parts. The selected methods are the autoregressive integrated moving average and generalized autoregressive conditional heteroscedasticity (ARIMA-GARCH) model, the Markov model with state membership degree, and the wavelet neural network. The ARIMA-GARCH model is used to predict the similar and volatile parts, and the other methods are adopted to predict the irregular part. This paper aims at providing better prediction methods for short-term traffic flow, and comparing the advantages and disadvantages of the linear and nonlinear hybrid methods. Additionally, the impacts of vehicle type on the predicted values are analyzed. The proposed methods are tested using field data from Dalian, China, and Hefei, China. The results suggest that the developed nonlinear hybrid method should be used with vehicle type and sampling interval as concerns. |
doi_str_mv | 10.1061/JTEPBS.0000388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412425240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412425240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a331t-e3eb4b70a3da72eb26bbc2e2c5c4fe9a6e2e8b219c6a84e36be7c7dfd3da554a3</originalsourceid><addsrcrecordid>eNp1kEtPwkAUhRujiUTZup7EpSl2Hn0tC-FlQAnUuGzmcRsKhcGZIuHfO6YYV97NOYvvnJscz3vAQQ8HEX5-yYeL_qoXuKNJcuV1CIupT5KUXv_6NIhvva61G8fgOKFhnHa87eQsTKXQHJq1VhaV2qDVWpvGz8HsUG54WVYSjWp9QgsDqpJNpfeozy0o5Ey2nM4zf5wtBxM01wpqxPcKffAvqKFBr3A0vHbSnLTZ3ns3Ja8tdC96572Phvlg4s_extNBNvM5pbjxgYJgIg44VTwmIEgkhCRAZChZCSmPgEAiCE5lxBMGNBIQy1iVyvFhyDi98x7b3oPRn0ewTbHRR7N3LwvCMGEkJCxwVK-lpNHWGiiLg6l23JwLHBQ_mxbtpsVlUxd4agPcSvir_If-Bs5TdtU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412425240</pqid></control><display><type>article</type><title>Hybrid Methods for Short-Term Traffic Flow Prediction Based on ARIMA-GARCH Model and Wavelet Neural Network</title><source>ASCE All titles</source><creator>Yao, Ronghan ; Zhang, Wensong ; Zhang, Lihui</creator><creatorcontrib>Yao, Ronghan ; Zhang, Wensong ; Zhang, Lihui</creatorcontrib><description>AbstractAccurate short-term traffic flow prediction is essential for real-time traffic control. A linear hybrid method and a nonlinear hybrid method for short-term traffic flow prediction are proposed with vehicle type as one concern. Traffic flow data are divided into the similar, volatile, and irregular parts. The selected methods are the autoregressive integrated moving average and generalized autoregressive conditional heteroscedasticity (ARIMA-GARCH) model, the Markov model with state membership degree, and the wavelet neural network. The ARIMA-GARCH model is used to predict the similar and volatile parts, and the other methods are adopted to predict the irregular part. This paper aims at providing better prediction methods for short-term traffic flow, and comparing the advantages and disadvantages of the linear and nonlinear hybrid methods. Additionally, the impacts of vehicle type on the predicted values are analyzed. The proposed methods are tested using field data from Dalian, China, and Hefei, China. The results suggest that the developed nonlinear hybrid method should be used with vehicle type and sampling interval as concerns.</description><identifier>ISSN: 2473-2907</identifier><identifier>EISSN: 2473-2893</identifier><identifier>DOI: 10.1061/JTEPBS.0000388</identifier><language>eng</language><publisher>Reston: American Society of Civil Engineers</publisher><subject>Autoregressive models ; Markov chains ; Methods ; Neural networks ; Short term ; Stochastic models ; Technical Papers ; Traffic control ; Traffic flow</subject><ispartof>Journal of transportation engineering, Part A, 2020-08, Vol.146 (8)</ispartof><rights>2020 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a331t-e3eb4b70a3da72eb26bbc2e2c5c4fe9a6e2e8b219c6a84e36be7c7dfd3da554a3</citedby><cites>FETCH-LOGICAL-a331t-e3eb4b70a3da72eb26bbc2e2c5c4fe9a6e2e8b219c6a84e36be7c7dfd3da554a3</cites><orcidid>0000-0002-6614-1960 ; 0000-0002-7839-1553 ; 0000-0002-7894-9289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/JTEPBS.0000388$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/JTEPBS.0000388$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,75966,75974</link.rule.ids></links><search><creatorcontrib>Yao, Ronghan</creatorcontrib><creatorcontrib>Zhang, Wensong</creatorcontrib><creatorcontrib>Zhang, Lihui</creatorcontrib><title>Hybrid Methods for Short-Term Traffic Flow Prediction Based on ARIMA-GARCH Model and Wavelet Neural Network</title><title>Journal of transportation engineering, Part A</title><description>AbstractAccurate short-term traffic flow prediction is essential for real-time traffic control. A linear hybrid method and a nonlinear hybrid method for short-term traffic flow prediction are proposed with vehicle type as one concern. Traffic flow data are divided into the similar, volatile, and irregular parts. The selected methods are the autoregressive integrated moving average and generalized autoregressive conditional heteroscedasticity (ARIMA-GARCH) model, the Markov model with state membership degree, and the wavelet neural network. The ARIMA-GARCH model is used to predict the similar and volatile parts, and the other methods are adopted to predict the irregular part. This paper aims at providing better prediction methods for short-term traffic flow, and comparing the advantages and disadvantages of the linear and nonlinear hybrid methods. Additionally, the impacts of vehicle type on the predicted values are analyzed. The proposed methods are tested using field data from Dalian, China, and Hefei, China. The results suggest that the developed nonlinear hybrid method should be used with vehicle type and sampling interval as concerns.</description><subject>Autoregressive models</subject><subject>Markov chains</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Short term</subject><subject>Stochastic models</subject><subject>Technical Papers</subject><subject>Traffic control</subject><subject>Traffic flow</subject><issn>2473-2907</issn><issn>2473-2893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwkAUhRujiUTZup7EpSl2Hn0tC-FlQAnUuGzmcRsKhcGZIuHfO6YYV97NOYvvnJscz3vAQQ8HEX5-yYeL_qoXuKNJcuV1CIupT5KUXv_6NIhvva61G8fgOKFhnHa87eQsTKXQHJq1VhaV2qDVWpvGz8HsUG54WVYSjWp9QgsDqpJNpfeozy0o5Ey2nM4zf5wtBxM01wpqxPcKffAvqKFBr3A0vHbSnLTZ3ns3Ja8tdC96572Phvlg4s_extNBNvM5pbjxgYJgIg44VTwmIEgkhCRAZChZCSmPgEAiCE5lxBMGNBIQy1iVyvFhyDi98x7b3oPRn0ewTbHRR7N3LwvCMGEkJCxwVK-lpNHWGiiLg6l23JwLHBQ_mxbtpsVlUxd4agPcSvir_If-Bs5TdtU</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Yao, Ronghan</creator><creator>Zhang, Wensong</creator><creator>Zhang, Lihui</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-6614-1960</orcidid><orcidid>https://orcid.org/0000-0002-7839-1553</orcidid><orcidid>https://orcid.org/0000-0002-7894-9289</orcidid></search><sort><creationdate>20200801</creationdate><title>Hybrid Methods for Short-Term Traffic Flow Prediction Based on ARIMA-GARCH Model and Wavelet Neural Network</title><author>Yao, Ronghan ; Zhang, Wensong ; Zhang, Lihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a331t-e3eb4b70a3da72eb26bbc2e2c5c4fe9a6e2e8b219c6a84e36be7c7dfd3da554a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autoregressive models</topic><topic>Markov chains</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Short term</topic><topic>Stochastic models</topic><topic>Technical Papers</topic><topic>Traffic control</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Ronghan</creatorcontrib><creatorcontrib>Zhang, Wensong</creatorcontrib><creatorcontrib>Zhang, Lihui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of transportation engineering, Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Ronghan</au><au>Zhang, Wensong</au><au>Zhang, Lihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Methods for Short-Term Traffic Flow Prediction Based on ARIMA-GARCH Model and Wavelet Neural Network</atitle><jtitle>Journal of transportation engineering, Part A</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>146</volume><issue>8</issue><issn>2473-2907</issn><eissn>2473-2893</eissn><abstract>AbstractAccurate short-term traffic flow prediction is essential for real-time traffic control. A linear hybrid method and a nonlinear hybrid method for short-term traffic flow prediction are proposed with vehicle type as one concern. Traffic flow data are divided into the similar, volatile, and irregular parts. The selected methods are the autoregressive integrated moving average and generalized autoregressive conditional heteroscedasticity (ARIMA-GARCH) model, the Markov model with state membership degree, and the wavelet neural network. The ARIMA-GARCH model is used to predict the similar and volatile parts, and the other methods are adopted to predict the irregular part. This paper aims at providing better prediction methods for short-term traffic flow, and comparing the advantages and disadvantages of the linear and nonlinear hybrid methods. Additionally, the impacts of vehicle type on the predicted values are analyzed. The proposed methods are tested using field data from Dalian, China, and Hefei, China. The results suggest that the developed nonlinear hybrid method should be used with vehicle type and sampling interval as concerns.</abstract><cop>Reston</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/JTEPBS.0000388</doi><orcidid>https://orcid.org/0000-0002-6614-1960</orcidid><orcidid>https://orcid.org/0000-0002-7839-1553</orcidid><orcidid>https://orcid.org/0000-0002-7894-9289</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2473-2907 |
ispartof | Journal of transportation engineering, Part A, 2020-08, Vol.146 (8) |
issn | 2473-2907 2473-2893 |
language | eng |
recordid | cdi_proquest_journals_2412425240 |
source | ASCE All titles |
subjects | Autoregressive models Markov chains Methods Neural networks Short term Stochastic models Technical Papers Traffic control Traffic flow |
title | Hybrid Methods for Short-Term Traffic Flow Prediction Based on ARIMA-GARCH Model and Wavelet Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Methods%20for%20Short-Term%20Traffic%20Flow%20Prediction%20Based%20on%20ARIMA-GARCH%20Model%20and%20Wavelet%20Neural%20Network&rft.jtitle=Journal%20of%20transportation%20engineering,%20Part%20A&rft.au=Yao,%20Ronghan&rft.date=2020-08-01&rft.volume=146&rft.issue=8&rft.issn=2473-2907&rft.eissn=2473-2893&rft_id=info:doi/10.1061/JTEPBS.0000388&rft_dat=%3Cproquest_cross%3E2412425240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412425240&rft_id=info:pmid/&rfr_iscdi=true |