Long-term real time object tracking based on multi-scale local correlation filtering and global re-detection
This paper investigates long-term visual object tracking which is a complex problem in computer vision community and big data analysis, due to the variation of the target and the surrounding environment. A novel tracking algorithm based on local correlation filtering and global keypoint matching is...
Gespeichert in:
Veröffentlicht in: | Computing 2020-06, Vol.102 (6), p.1487-1501 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1501 |
---|---|
container_issue | 6 |
container_start_page | 1487 |
container_title | Computing |
container_volume | 102 |
creator | Zhao, Qi Zhang, Boxue Feng, Wenquan Du, Zhiying Zhang, Hong Sun, Daniel |
description | This paper investigates long-term visual object tracking which is a complex problem in computer vision community and big data analysis, due to the variation of the target and the surrounding environment. A novel tracking algorithm based on local correlation filtering and global keypoint matching is proposed to solve problems occurred during long-term tracking such as occlusion, target-losing, etc. The algorithm consists of two major components: (1) local object tracking module, and (2) global losing re-detection module. The local tracking module optimizes the conventional correlation filtering algorithm. Firstly, the Color Name feature is applied to increase the color sensitivity. Secondly, a scale traversal is employed to accommodate target scale changes. In the global losing re-detection module, the target losing judgment and global re-detection is realized by keypoint feature models of foreground and background. The proposed tracker achieves the 1st place in the VTB50 test set with 81.3% precision and 61.3% success rate, which outperforms other existing state-of-the-art trackers by over 10%. And it achieves the 2nd place in our Chasing-Car test set with a higher real-time performance 43.2 fps. The experimental results show that the proposed tracker has higher accuracy and robustness when dealing with situations like object deformation, occlusion and target-losing, etc. |
doi_str_mv | 10.1007/s00607-020-00807-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412411767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412411767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e9dfc02d45f81c23fea80e99a9f1db0de1a0a16192b2a83301fb4b3d117641133</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWKt_wFXAdXSS3OdSxBcU3Ci4C7nJpNyae1OTdOG_N7WCO2FgBuY7Z5hDyCWHaw7Q3iSABloGAhhAV6buiCx4JRtWQ90ekwUAB1Z19fspOUtpAwBCdv2C-FWY1yxjnGhE7WkeJ6Rh2KDJNEdtPsZ5TQed0NIw02nn88iS0R6pD6VRE2JEr_NYtm70xWgv0LOlax-GAkRkFnOxK8Q5OXHaJ7z47Uvy9nD_evfEVi-Pz3e3K2ZkIzPD3joDwla167gR0qHuAPte947bASxyDZo3vBeD0J2UwN1QDdJy3jYV51IuydXBdxvD5w5TVpuwi3M5qUTFSxWwLZQ4UCaGlCI6tY3jpOOX4qD2qapDqqqkqn5SVV0RyYMobfefYvyz_kf1DZG_e18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412411767</pqid></control><display><type>article</type><title>Long-term real time object tracking based on multi-scale local correlation filtering and global re-detection</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Zhao, Qi ; Zhang, Boxue ; Feng, Wenquan ; Du, Zhiying ; Zhang, Hong ; Sun, Daniel</creator><creatorcontrib>Zhao, Qi ; Zhang, Boxue ; Feng, Wenquan ; Du, Zhiying ; Zhang, Hong ; Sun, Daniel</creatorcontrib><description>This paper investigates long-term visual object tracking which is a complex problem in computer vision community and big data analysis, due to the variation of the target and the surrounding environment. A novel tracking algorithm based on local correlation filtering and global keypoint matching is proposed to solve problems occurred during long-term tracking such as occlusion, target-losing, etc. The algorithm consists of two major components: (1) local object tracking module, and (2) global losing re-detection module. The local tracking module optimizes the conventional correlation filtering algorithm. Firstly, the Color Name feature is applied to increase the color sensitivity. Secondly, a scale traversal is employed to accommodate target scale changes. In the global losing re-detection module, the target losing judgment and global re-detection is realized by keypoint feature models of foreground and background. The proposed tracker achieves the 1st place in the VTB50 test set with 81.3% precision and 61.3% success rate, which outperforms other existing state-of-the-art trackers by over 10%. And it achieves the 2nd place in our Chasing-Car test set with a higher real-time performance 43.2 fps. The experimental results show that the proposed tracker has higher accuracy and robustness when dealing with situations like object deformation, occlusion and target-losing, etc.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-020-00807-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Artificial Intelligence ; Color sensitivity ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Computer vision ; Correlation ; Data analysis ; Filtration ; Information Systems Applications (incl.Internet) ; Modules ; Multiscale analysis ; Occlusion ; Optical tracking ; Real time ; Software Engineering ; Special Issue Article ; Target detection</subject><ispartof>Computing, 2020-06, Vol.102 (6), p.1487-1501</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e9dfc02d45f81c23fea80e99a9f1db0de1a0a16192b2a83301fb4b3d117641133</citedby><cites>FETCH-LOGICAL-c363t-e9dfc02d45f81c23fea80e99a9f1db0de1a0a16192b2a83301fb4b3d117641133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-020-00807-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-020-00807-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Qi</creatorcontrib><creatorcontrib>Zhang, Boxue</creatorcontrib><creatorcontrib>Feng, Wenquan</creatorcontrib><creatorcontrib>Du, Zhiying</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Sun, Daniel</creatorcontrib><title>Long-term real time object tracking based on multi-scale local correlation filtering and global re-detection</title><title>Computing</title><addtitle>Computing</addtitle><description>This paper investigates long-term visual object tracking which is a complex problem in computer vision community and big data analysis, due to the variation of the target and the surrounding environment. A novel tracking algorithm based on local correlation filtering and global keypoint matching is proposed to solve problems occurred during long-term tracking such as occlusion, target-losing, etc. The algorithm consists of two major components: (1) local object tracking module, and (2) global losing re-detection module. The local tracking module optimizes the conventional correlation filtering algorithm. Firstly, the Color Name feature is applied to increase the color sensitivity. Secondly, a scale traversal is employed to accommodate target scale changes. In the global losing re-detection module, the target losing judgment and global re-detection is realized by keypoint feature models of foreground and background. The proposed tracker achieves the 1st place in the VTB50 test set with 81.3% precision and 61.3% success rate, which outperforms other existing state-of-the-art trackers by over 10%. And it achieves the 2nd place in our Chasing-Car test set with a higher real-time performance 43.2 fps. The experimental results show that the proposed tracker has higher accuracy and robustness when dealing with situations like object deformation, occlusion and target-losing, etc.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Color sensitivity</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Correlation</subject><subject>Data analysis</subject><subject>Filtration</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Modules</subject><subject>Multiscale analysis</subject><subject>Occlusion</subject><subject>Optical tracking</subject><subject>Real time</subject><subject>Software Engineering</subject><subject>Special Issue Article</subject><subject>Target detection</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLQzEQhYMoWKt_wFXAdXSS3OdSxBcU3Ci4C7nJpNyae1OTdOG_N7WCO2FgBuY7Z5hDyCWHaw7Q3iSABloGAhhAV6buiCx4JRtWQ90ekwUAB1Z19fspOUtpAwBCdv2C-FWY1yxjnGhE7WkeJ6Rh2KDJNEdtPsZ5TQed0NIw02nn88iS0R6pD6VRE2JEr_NYtm70xWgv0LOlax-GAkRkFnOxK8Q5OXHaJ7z47Uvy9nD_evfEVi-Pz3e3K2ZkIzPD3joDwla167gR0qHuAPte947bASxyDZo3vBeD0J2UwN1QDdJy3jYV51IuydXBdxvD5w5TVpuwi3M5qUTFSxWwLZQ4UCaGlCI6tY3jpOOX4qD2qapDqqqkqn5SVV0RyYMobfefYvyz_kf1DZG_e18</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zhao, Qi</creator><creator>Zhang, Boxue</creator><creator>Feng, Wenquan</creator><creator>Du, Zhiying</creator><creator>Zhang, Hong</creator><creator>Sun, Daniel</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200601</creationdate><title>Long-term real time object tracking based on multi-scale local correlation filtering and global re-detection</title><author>Zhao, Qi ; Zhang, Boxue ; Feng, Wenquan ; Du, Zhiying ; Zhang, Hong ; Sun, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e9dfc02d45f81c23fea80e99a9f1db0de1a0a16192b2a83301fb4b3d117641133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Color sensitivity</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Correlation</topic><topic>Data analysis</topic><topic>Filtration</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Modules</topic><topic>Multiscale analysis</topic><topic>Occlusion</topic><topic>Optical tracking</topic><topic>Real time</topic><topic>Software Engineering</topic><topic>Special Issue Article</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qi</creatorcontrib><creatorcontrib>Zhang, Boxue</creatorcontrib><creatorcontrib>Feng, Wenquan</creatorcontrib><creatorcontrib>Du, Zhiying</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Sun, Daniel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qi</au><au>Zhang, Boxue</au><au>Feng, Wenquan</au><au>Du, Zhiying</au><au>Zhang, Hong</au><au>Sun, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term real time object tracking based on multi-scale local correlation filtering and global re-detection</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>102</volume><issue>6</issue><spage>1487</spage><epage>1501</epage><pages>1487-1501</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>This paper investigates long-term visual object tracking which is a complex problem in computer vision community and big data analysis, due to the variation of the target and the surrounding environment. A novel tracking algorithm based on local correlation filtering and global keypoint matching is proposed to solve problems occurred during long-term tracking such as occlusion, target-losing, etc. The algorithm consists of two major components: (1) local object tracking module, and (2) global losing re-detection module. The local tracking module optimizes the conventional correlation filtering algorithm. Firstly, the Color Name feature is applied to increase the color sensitivity. Secondly, a scale traversal is employed to accommodate target scale changes. In the global losing re-detection module, the target losing judgment and global re-detection is realized by keypoint feature models of foreground and background. The proposed tracker achieves the 1st place in the VTB50 test set with 81.3% precision and 61.3% success rate, which outperforms other existing state-of-the-art trackers by over 10%. And it achieves the 2nd place in our Chasing-Car test set with a higher real-time performance 43.2 fps. The experimental results show that the proposed tracker has higher accuracy and robustness when dealing with situations like object deformation, occlusion and target-losing, etc.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-020-00807-8</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-485X |
ispartof | Computing, 2020-06, Vol.102 (6), p.1487-1501 |
issn | 0010-485X 1436-5057 |
language | eng |
recordid | cdi_proquest_journals_2412411767 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Artificial Intelligence Color sensitivity Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Computer vision Correlation Data analysis Filtration Information Systems Applications (incl.Internet) Modules Multiscale analysis Occlusion Optical tracking Real time Software Engineering Special Issue Article Target detection |
title | Long-term real time object tracking based on multi-scale local correlation filtering and global re-detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20real%20time%20object%20tracking%20based%20on%20multi-scale%20local%20correlation%20filtering%20and%20global%20re-detection&rft.jtitle=Computing&rft.au=Zhao,%20Qi&rft.date=2020-06-01&rft.volume=102&rft.issue=6&rft.spage=1487&rft.epage=1501&rft.pages=1487-1501&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-020-00807-8&rft_dat=%3Cproquest_cross%3E2412411767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412411767&rft_id=info:pmid/&rfr_iscdi=true |