Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K
The tensile curves of ultrafine-grained (UFG) aluminum structured by high pressure torsion (HPT) technique have been obtained at 4.2 and 77 K for the first time as well as the temperature dependence of its yield strength in the range 4.2–300 K. The analysis of the results in correlation with microst...
Gespeichert in:
Veröffentlicht in: | Physics of the solid state 2020-06, Vol.62 (6), p.1048-1055 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1055 |
---|---|
container_issue | 6 |
container_start_page | 1048 |
container_title | Physics of the solid state |
container_volume | 62 |
creator | Orlova, T. S. Shpeizman, V. V. Mavlyutov, A. M. Latynina, T. A. Averkin, A. I. Timashov, R. B. |
description | The tensile curves of ultrafine-grained (UFG) aluminum structured by high pressure torsion (HPT) technique have been obtained at 4.2 and 77 K for the first time as well as the temperature dependence of its yield strength in the range 4.2–300 K. The analysis of the results in correlation with microstructure parameters and comparison with the results of such studies for UFG aluminum structured by equal-channel angular pressing (ECAP) technique has been performed. It has been shown that the HPT-processed aluminum has a significantly higher yield strength at low temperatures than the ECAP-processed aluminum. Combination of high strength and plasticity (440 MPa and 55%, respectively) was obtained at 4.2 K, which makes this material attractive for practical use at low temperatures. The analysis of the obtained results indicates that, at room and low (77 K) temperatures, the plasticity of the UFG aluminum with a grain size less than 1 μm largely depends on the nature of the grain size distribution, as well as on the type and state of the grain boundaries (equilibrium or nonequilibrium), which opens up prospects for controlling the value of plasticity by creating a given microstructural design while maintaining a high level of strength of ultrafine-grained materials. |
doi_str_mv | 10.1134/S1063783420060190 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2412156189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626344632</galeid><sourcerecordid>A626344632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-fefdca0dde2bc690a33e9d72f835b13cdc490fe050fa2b5aa940c37f6f6a83d93</originalsourceid><addsrcrecordid>eNp1kc1KAzEQgBdR8PcBvAU8edg6-dl0cyyitVhR1IK3Jc1O2sj-1GQX9OY7-IY-iSkVRERymJD5vkkykyTHFAaUcnH2QEHyYc4FA5BAFWwlexQUpFJI2F7vJU_X-d1kP4RnAEpppvaSpxs0S904oyty59sV-s5hIK0ls6rz2roG07HXMZRkVPW1a_qauIZ0SySPWEded71Hcq-bBRIxYJ_vHxyAXB8mO1ZXAY--40Eyu7x4PL9Kp7fjyflomhqeqy61aEujoSyRzY1UoDlHVQ6ZzXk2p9yURiiwCBlYzeaZ1kqA4UMrrdQ5LxU_SE42dVe-fekxdMVz2_smXlkwQRnNJM3X1GBDLXSFhWtsGz9n4iqxdqZt0Lp4PpJMciEkZ1E4_SVEpsPXbqH7EIrJw_1vlm5Y49sQPNpi5V2t_VtBoVhPp_gzneiwjRMiG1vnf579v_QFOAePyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412156189</pqid></control><display><type>article</type><title>Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K</title><source>Springer Online Journals Complete</source><creator>Orlova, T. S. ; Shpeizman, V. V. ; Mavlyutov, A. M. ; Latynina, T. A. ; Averkin, A. I. ; Timashov, R. B.</creator><creatorcontrib>Orlova, T. S. ; Shpeizman, V. V. ; Mavlyutov, A. M. ; Latynina, T. A. ; Averkin, A. I. ; Timashov, R. B.</creatorcontrib><description>The tensile curves of ultrafine-grained (UFG) aluminum structured by high pressure torsion (HPT) technique have been obtained at 4.2 and 77 K for the first time as well as the temperature dependence of its yield strength in the range 4.2–300 K. The analysis of the results in correlation with microstructure parameters and comparison with the results of such studies for UFG aluminum structured by equal-channel angular pressing (ECAP) technique has been performed. It has been shown that the HPT-processed aluminum has a significantly higher yield strength at low temperatures than the ECAP-processed aluminum. Combination of high strength and plasticity (440 MPa and 55%, respectively) was obtained at 4.2 K, which makes this material attractive for practical use at low temperatures. The analysis of the obtained results indicates that, at room and low (77 K) temperatures, the plasticity of the UFG aluminum with a grain size less than 1 μm largely depends on the nature of the grain size distribution, as well as on the type and state of the grain boundaries (equilibrium or nonequilibrium), which opens up prospects for controlling the value of plasticity by creating a given microstructural design while maintaining a high level of strength of ultrafine-grained materials.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783420060190</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum ; Aluminum products ; Analysis ; Correlation analysis ; Equal channel angular pressing ; Grain boundaries ; Grain size ; Grain size distribution ; Low temperature ; Mechanical Properties ; Microstructure ; Physics ; Physics and Astronomy ; Physics of Strength ; Plastic properties ; Plasticity ; Solid State Physics ; Temperature dependence ; Ultrafines ; Yield strength ; Yield stress</subject><ispartof>Physics of the solid state, 2020-06, Vol.62 (6), p.1048-1055</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-fefdca0dde2bc690a33e9d72f835b13cdc490fe050fa2b5aa940c37f6f6a83d93</citedby><cites>FETCH-LOGICAL-c389t-fefdca0dde2bc690a33e9d72f835b13cdc490fe050fa2b5aa940c37f6f6a83d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783420060190$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783420060190$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Orlova, T. S.</creatorcontrib><creatorcontrib>Shpeizman, V. V.</creatorcontrib><creatorcontrib>Mavlyutov, A. M.</creatorcontrib><creatorcontrib>Latynina, T. A.</creatorcontrib><creatorcontrib>Averkin, A. I.</creatorcontrib><creatorcontrib>Timashov, R. B.</creatorcontrib><title>Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>The tensile curves of ultrafine-grained (UFG) aluminum structured by high pressure torsion (HPT) technique have been obtained at 4.2 and 77 K for the first time as well as the temperature dependence of its yield strength in the range 4.2–300 K. The analysis of the results in correlation with microstructure parameters and comparison with the results of such studies for UFG aluminum structured by equal-channel angular pressing (ECAP) technique has been performed. It has been shown that the HPT-processed aluminum has a significantly higher yield strength at low temperatures than the ECAP-processed aluminum. Combination of high strength and plasticity (440 MPa and 55%, respectively) was obtained at 4.2 K, which makes this material attractive for practical use at low temperatures. The analysis of the obtained results indicates that, at room and low (77 K) temperatures, the plasticity of the UFG aluminum with a grain size less than 1 μm largely depends on the nature of the grain size distribution, as well as on the type and state of the grain boundaries (equilibrium or nonequilibrium), which opens up prospects for controlling the value of plasticity by creating a given microstructural design while maintaining a high level of strength of ultrafine-grained materials.</description><subject>Aluminum</subject><subject>Aluminum products</subject><subject>Analysis</subject><subject>Correlation analysis</subject><subject>Equal channel angular pressing</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Low temperature</subject><subject>Mechanical Properties</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Strength</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Solid State Physics</subject><subject>Temperature dependence</subject><subject>Ultrafines</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KAzEQgBdR8PcBvAU8edg6-dl0cyyitVhR1IK3Jc1O2sj-1GQX9OY7-IY-iSkVRERymJD5vkkykyTHFAaUcnH2QEHyYc4FA5BAFWwlexQUpFJI2F7vJU_X-d1kP4RnAEpppvaSpxs0S904oyty59sV-s5hIK0ls6rz2roG07HXMZRkVPW1a_qauIZ0SySPWEded71Hcq-bBRIxYJ_vHxyAXB8mO1ZXAY--40Eyu7x4PL9Kp7fjyflomhqeqy61aEujoSyRzY1UoDlHVQ6ZzXk2p9yURiiwCBlYzeaZ1kqA4UMrrdQ5LxU_SE42dVe-fekxdMVz2_smXlkwQRnNJM3X1GBDLXSFhWtsGz9n4iqxdqZt0Lp4PpJMciEkZ1E4_SVEpsPXbqH7EIrJw_1vlm5Y49sQPNpi5V2t_VtBoVhPp_gzneiwjRMiG1vnf579v_QFOAePyQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Orlova, T. S.</creator><creator>Shpeizman, V. V.</creator><creator>Mavlyutov, A. M.</creator><creator>Latynina, T. A.</creator><creator>Averkin, A. I.</creator><creator>Timashov, R. B.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200601</creationdate><title>Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K</title><author>Orlova, T. S. ; Shpeizman, V. V. ; Mavlyutov, A. M. ; Latynina, T. A. ; Averkin, A. I. ; Timashov, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-fefdca0dde2bc690a33e9d72f835b13cdc490fe050fa2b5aa940c37f6f6a83d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Aluminum products</topic><topic>Analysis</topic><topic>Correlation analysis</topic><topic>Equal channel angular pressing</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Low temperature</topic><topic>Mechanical Properties</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Strength</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Solid State Physics</topic><topic>Temperature dependence</topic><topic>Ultrafines</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlova, T. S.</creatorcontrib><creatorcontrib>Shpeizman, V. V.</creatorcontrib><creatorcontrib>Mavlyutov, A. M.</creatorcontrib><creatorcontrib>Latynina, T. A.</creatorcontrib><creatorcontrib>Averkin, A. I.</creatorcontrib><creatorcontrib>Timashov, R. B.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlova, T. S.</au><au>Shpeizman, V. V.</au><au>Mavlyutov, A. M.</au><au>Latynina, T. A.</au><au>Averkin, A. I.</au><au>Timashov, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>62</volume><issue>6</issue><spage>1048</spage><epage>1055</epage><pages>1048-1055</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>The tensile curves of ultrafine-grained (UFG) aluminum structured by high pressure torsion (HPT) technique have been obtained at 4.2 and 77 K for the first time as well as the temperature dependence of its yield strength in the range 4.2–300 K. The analysis of the results in correlation with microstructure parameters and comparison with the results of such studies for UFG aluminum structured by equal-channel angular pressing (ECAP) technique has been performed. It has been shown that the HPT-processed aluminum has a significantly higher yield strength at low temperatures than the ECAP-processed aluminum. Combination of high strength and plasticity (440 MPa and 55%, respectively) was obtained at 4.2 K, which makes this material attractive for practical use at low temperatures. The analysis of the obtained results indicates that, at room and low (77 K) temperatures, the plasticity of the UFG aluminum with a grain size less than 1 μm largely depends on the nature of the grain size distribution, as well as on the type and state of the grain boundaries (equilibrium or nonequilibrium), which opens up prospects for controlling the value of plasticity by creating a given microstructural design while maintaining a high level of strength of ultrafine-grained materials.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783420060190</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7834 |
ispartof | Physics of the solid state, 2020-06, Vol.62 (6), p.1048-1055 |
issn | 1063-7834 1090-6460 |
language | eng |
recordid | cdi_proquest_journals_2412156189 |
source | Springer Online Journals Complete |
subjects | Aluminum Aluminum products Analysis Correlation analysis Equal channel angular pressing Grain boundaries Grain size Grain size distribution Low temperature Mechanical Properties Microstructure Physics Physics and Astronomy Physics of Strength Plastic properties Plasticity Solid State Physics Temperature dependence Ultrafines Yield strength Yield stress |
title | Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Properties%20of%20Ultrafine-Grained%20Aluminum%20in%20the%20Temperature%20Range%204.2%E2%80%93300%20K&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Orlova,%20T.%20S.&rft.date=2020-06-01&rft.volume=62&rft.issue=6&rft.spage=1048&rft.epage=1055&rft.pages=1048-1055&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783420060190&rft_dat=%3Cgale_proqu%3EA626344632%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412156189&rft_id=info:pmid/&rft_galeid=A626344632&rfr_iscdi=true |