Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K

The tensile curves of ultrafine-grained (UFG) aluminum structured by high pressure torsion (HPT) technique have been obtained at 4.2 and 77 K for the first time as well as the temperature dependence of its yield strength in the range 4.2–300 K. The analysis of the results in correlation with microst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the solid state 2020-06, Vol.62 (6), p.1048-1055
Hauptverfasser: Orlova, T. S., Shpeizman, V. V., Mavlyutov, A. M., Latynina, T. A., Averkin, A. I., Timashov, R. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1055
container_issue 6
container_start_page 1048
container_title Physics of the solid state
container_volume 62
creator Orlova, T. S.
Shpeizman, V. V.
Mavlyutov, A. M.
Latynina, T. A.
Averkin, A. I.
Timashov, R. B.
description The tensile curves of ultrafine-grained (UFG) aluminum structured by high pressure torsion (HPT) technique have been obtained at 4.2 and 77 K for the first time as well as the temperature dependence of its yield strength in the range 4.2–300 K. The analysis of the results in correlation with microstructure parameters and comparison with the results of such studies for UFG aluminum structured by equal-channel angular pressing (ECAP) technique has been performed. It has been shown that the HPT-processed aluminum has a significantly higher yield strength at low temperatures than the ECAP-processed aluminum. Combination of high strength and plasticity (440 MPa and 55%, respectively) was obtained at 4.2 K, which makes this material attractive for practical use at low temperatures. The analysis of the obtained results indicates that, at room and low (77 K) temperatures, the plasticity of the UFG aluminum with a grain size less than 1 μm largely depends on the nature of the grain size distribution, as well as on the type and state of the grain boundaries (equilibrium or nonequilibrium), which opens up prospects for controlling the value of plasticity by creating a given microstructural design while maintaining a high level of strength of ultrafine-grained materials.
doi_str_mv 10.1134/S1063783420060190
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2412156189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626344632</galeid><sourcerecordid>A626344632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-fefdca0dde2bc690a33e9d72f835b13cdc490fe050fa2b5aa940c37f6f6a83d93</originalsourceid><addsrcrecordid>eNp1kc1KAzEQgBdR8PcBvAU8edg6-dl0cyyitVhR1IK3Jc1O2sj-1GQX9OY7-IY-iSkVRERymJD5vkkykyTHFAaUcnH2QEHyYc4FA5BAFWwlexQUpFJI2F7vJU_X-d1kP4RnAEpppvaSpxs0S904oyty59sV-s5hIK0ls6rz2roG07HXMZRkVPW1a_qauIZ0SySPWEded71Hcq-bBRIxYJ_vHxyAXB8mO1ZXAY--40Eyu7x4PL9Kp7fjyflomhqeqy61aEujoSyRzY1UoDlHVQ6ZzXk2p9yURiiwCBlYzeaZ1kqA4UMrrdQ5LxU_SE42dVe-fekxdMVz2_smXlkwQRnNJM3X1GBDLXSFhWtsGz9n4iqxdqZt0Lp4PpJMciEkZ1E4_SVEpsPXbqH7EIrJw_1vlm5Y49sQPNpi5V2t_VtBoVhPp_gzneiwjRMiG1vnf579v_QFOAePyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412156189</pqid></control><display><type>article</type><title>Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K</title><source>Springer Online Journals Complete</source><creator>Orlova, T. S. ; Shpeizman, V. V. ; Mavlyutov, A. M. ; Latynina, T. A. ; Averkin, A. I. ; Timashov, R. B.</creator><creatorcontrib>Orlova, T. S. ; Shpeizman, V. V. ; Mavlyutov, A. M. ; Latynina, T. A. ; Averkin, A. I. ; Timashov, R. B.</creatorcontrib><description>The tensile curves of ultrafine-grained (UFG) aluminum structured by high pressure torsion (HPT) technique have been obtained at 4.2 and 77 K for the first time as well as the temperature dependence of its yield strength in the range 4.2–300 K. The analysis of the results in correlation with microstructure parameters and comparison with the results of such studies for UFG aluminum structured by equal-channel angular pressing (ECAP) technique has been performed. It has been shown that the HPT-processed aluminum has a significantly higher yield strength at low temperatures than the ECAP-processed aluminum. Combination of high strength and plasticity (440 MPa and 55%, respectively) was obtained at 4.2 K, which makes this material attractive for practical use at low temperatures. The analysis of the obtained results indicates that, at room and low (77 K) temperatures, the plasticity of the UFG aluminum with a grain size less than 1 μm largely depends on the nature of the grain size distribution, as well as on the type and state of the grain boundaries (equilibrium or nonequilibrium), which opens up prospects for controlling the value of plasticity by creating a given microstructural design while maintaining a high level of strength of ultrafine-grained materials.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783420060190</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum ; Aluminum products ; Analysis ; Correlation analysis ; Equal channel angular pressing ; Grain boundaries ; Grain size ; Grain size distribution ; Low temperature ; Mechanical Properties ; Microstructure ; Physics ; Physics and Astronomy ; Physics of Strength ; Plastic properties ; Plasticity ; Solid State Physics ; Temperature dependence ; Ultrafines ; Yield strength ; Yield stress</subject><ispartof>Physics of the solid state, 2020-06, Vol.62 (6), p.1048-1055</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-fefdca0dde2bc690a33e9d72f835b13cdc490fe050fa2b5aa940c37f6f6a83d93</citedby><cites>FETCH-LOGICAL-c389t-fefdca0dde2bc690a33e9d72f835b13cdc490fe050fa2b5aa940c37f6f6a83d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783420060190$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783420060190$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Orlova, T. S.</creatorcontrib><creatorcontrib>Shpeizman, V. V.</creatorcontrib><creatorcontrib>Mavlyutov, A. M.</creatorcontrib><creatorcontrib>Latynina, T. A.</creatorcontrib><creatorcontrib>Averkin, A. I.</creatorcontrib><creatorcontrib>Timashov, R. B.</creatorcontrib><title>Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>The tensile curves of ultrafine-grained (UFG) aluminum structured by high pressure torsion (HPT) technique have been obtained at 4.2 and 77 K for the first time as well as the temperature dependence of its yield strength in the range 4.2–300 K. The analysis of the results in correlation with microstructure parameters and comparison with the results of such studies for UFG aluminum structured by equal-channel angular pressing (ECAP) technique has been performed. It has been shown that the HPT-processed aluminum has a significantly higher yield strength at low temperatures than the ECAP-processed aluminum. Combination of high strength and plasticity (440 MPa and 55%, respectively) was obtained at 4.2 K, which makes this material attractive for practical use at low temperatures. The analysis of the obtained results indicates that, at room and low (77 K) temperatures, the plasticity of the UFG aluminum with a grain size less than 1 μm largely depends on the nature of the grain size distribution, as well as on the type and state of the grain boundaries (equilibrium or nonequilibrium), which opens up prospects for controlling the value of plasticity by creating a given microstructural design while maintaining a high level of strength of ultrafine-grained materials.</description><subject>Aluminum</subject><subject>Aluminum products</subject><subject>Analysis</subject><subject>Correlation analysis</subject><subject>Equal channel angular pressing</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Low temperature</subject><subject>Mechanical Properties</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Strength</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Solid State Physics</subject><subject>Temperature dependence</subject><subject>Ultrafines</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KAzEQgBdR8PcBvAU8edg6-dl0cyyitVhR1IK3Jc1O2sj-1GQX9OY7-IY-iSkVRERymJD5vkkykyTHFAaUcnH2QEHyYc4FA5BAFWwlexQUpFJI2F7vJU_X-d1kP4RnAEpppvaSpxs0S904oyty59sV-s5hIK0ls6rz2roG07HXMZRkVPW1a_qauIZ0SySPWEded71Hcq-bBRIxYJ_vHxyAXB8mO1ZXAY--40Eyu7x4PL9Kp7fjyflomhqeqy61aEujoSyRzY1UoDlHVQ6ZzXk2p9yURiiwCBlYzeaZ1kqA4UMrrdQ5LxU_SE42dVe-fekxdMVz2_smXlkwQRnNJM3X1GBDLXSFhWtsGz9n4iqxdqZt0Lp4PpJMciEkZ1E4_SVEpsPXbqH7EIrJw_1vlm5Y49sQPNpi5V2t_VtBoVhPp_gzneiwjRMiG1vnf579v_QFOAePyQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Orlova, T. S.</creator><creator>Shpeizman, V. V.</creator><creator>Mavlyutov, A. M.</creator><creator>Latynina, T. A.</creator><creator>Averkin, A. I.</creator><creator>Timashov, R. B.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200601</creationdate><title>Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K</title><author>Orlova, T. S. ; Shpeizman, V. V. ; Mavlyutov, A. M. ; Latynina, T. A. ; Averkin, A. I. ; Timashov, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-fefdca0dde2bc690a33e9d72f835b13cdc490fe050fa2b5aa940c37f6f6a83d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Aluminum products</topic><topic>Analysis</topic><topic>Correlation analysis</topic><topic>Equal channel angular pressing</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Low temperature</topic><topic>Mechanical Properties</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Strength</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Solid State Physics</topic><topic>Temperature dependence</topic><topic>Ultrafines</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlova, T. S.</creatorcontrib><creatorcontrib>Shpeizman, V. V.</creatorcontrib><creatorcontrib>Mavlyutov, A. M.</creatorcontrib><creatorcontrib>Latynina, T. A.</creatorcontrib><creatorcontrib>Averkin, A. I.</creatorcontrib><creatorcontrib>Timashov, R. B.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlova, T. S.</au><au>Shpeizman, V. V.</au><au>Mavlyutov, A. M.</au><au>Latynina, T. A.</au><au>Averkin, A. I.</au><au>Timashov, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>62</volume><issue>6</issue><spage>1048</spage><epage>1055</epage><pages>1048-1055</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>The tensile curves of ultrafine-grained (UFG) aluminum structured by high pressure torsion (HPT) technique have been obtained at 4.2 and 77 K for the first time as well as the temperature dependence of its yield strength in the range 4.2–300 K. The analysis of the results in correlation with microstructure parameters and comparison with the results of such studies for UFG aluminum structured by equal-channel angular pressing (ECAP) technique has been performed. It has been shown that the HPT-processed aluminum has a significantly higher yield strength at low temperatures than the ECAP-processed aluminum. Combination of high strength and plasticity (440 MPa and 55%, respectively) was obtained at 4.2 K, which makes this material attractive for practical use at low temperatures. The analysis of the obtained results indicates that, at room and low (77 K) temperatures, the plasticity of the UFG aluminum with a grain size less than 1 μm largely depends on the nature of the grain size distribution, as well as on the type and state of the grain boundaries (equilibrium or nonequilibrium), which opens up prospects for controlling the value of plasticity by creating a given microstructural design while maintaining a high level of strength of ultrafine-grained materials.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783420060190</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7834
ispartof Physics of the solid state, 2020-06, Vol.62 (6), p.1048-1055
issn 1063-7834
1090-6460
language eng
recordid cdi_proquest_journals_2412156189
source Springer Online Journals Complete
subjects Aluminum
Aluminum products
Analysis
Correlation analysis
Equal channel angular pressing
Grain boundaries
Grain size
Grain size distribution
Low temperature
Mechanical Properties
Microstructure
Physics
Physics and Astronomy
Physics of Strength
Plastic properties
Plasticity
Solid State Physics
Temperature dependence
Ultrafines
Yield strength
Yield stress
title Mechanical Properties of Ultrafine-Grained Aluminum in the Temperature Range 4.2–300 K
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Properties%20of%20Ultrafine-Grained%20Aluminum%20in%20the%20Temperature%20Range%204.2%E2%80%93300%20K&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Orlova,%20T.%20S.&rft.date=2020-06-01&rft.volume=62&rft.issue=6&rft.spage=1048&rft.epage=1055&rft.pages=1048-1055&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783420060190&rft_dat=%3Cgale_proqu%3EA626344632%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412156189&rft_id=info:pmid/&rft_galeid=A626344632&rfr_iscdi=true