Long‐Term Trends and Solar Responses of the Mesopause Temperatures Observed by SABER During the 2002–2019 Period

The global distribution and variations of the monthly mesopause temperature are presented during 2002–2019 covering the latitudes of 83°S to 83°N based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. To investigate the long‐term trend and solar response of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2020-06, Vol.125 (11), p.n/a
Hauptverfasser: Zhao, X. R., Sheng, Z., Shi, H. Q., Weng, L. B., Liao, Q. X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Journal of geophysical research. Atmospheres
container_volume 125
creator Zhao, X. R.
Sheng, Z.
Shi, H. Q.
Weng, L. B.
Liao, Q. X.
description The global distribution and variations of the monthly mesopause temperature are presented during 2002–2019 covering the latitudes of 83°S to 83°N based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. To investigate the long‐term trend and solar response of the mesopause temperature, a three‐component harmonic fit is first applied to remove the seasonal variation from the monthly temperature data series. Then a multiple linear regression model is performed to residual temperatures versus constant, linear trend, solar activity, and geomagnetic activity terms. In this study, the mesopause temperature shows a cooling trend through all latitudes ranging from ~0 to −0.14 K/year with a mean of −0.075 ± 0.043 K/year. The cooling trends in the Southern Hemisphere are stronger than those in the Northern Hemisphere. For high latitudes (60–80°), significant negative trends can be observed during nonsummertime, while no significant trends are found for summertime. The mesopause temperature shows apparent positive responses to solar activity through all latitudes ranging from 3.03 to 4.80 K per 100 solar flux units (sfu) with a mean of 3.99 ± 0.49 K per 100 sfu, which is more significant and stable in the Northern Hemisphere. There is a pronounced drop for mesopause height at polar latitudes, which reflects the shrinking effect at lower altitudes mainly caused by greenhouse gas cooling. We show that the length of the time interval analyzed strongly influences the results. Our results, obtained from 18‐year SABER observations, are expected to be a robust measure of the mesopause temperature variability. Key Points The mesopause temperature during 2002–2019 shows a cooling trend through all latitudes ranging from ~0 to −0.14 K/year The mesopause temperature shows a positive response to solar activity through all latitudes ranging from 3.03 to 4.80 K per 100 sfu A sufficiently long time interval is necessary for such analyses
doi_str_mv 10.1029/2020JD032418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2411500837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411500837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3452-bf211400733ef5c291fe8b6433cac66ebabf03307ad8aced23b79f28cf4d3e773</originalsourceid><addsrcrecordid>eNp9kM1OwkAQgDdGEwly8wE28Sq6O9vfIwKiBIOBmnhrtu0slkC37rYabjyCiW_Ik1jEGE_OZSaZb37yEXLO2RVnEF4DAzYeMAEOD45IC7gXdoMw9I5_a__5lHSsXbImAiYc12mRaqKLxW77EaFZ08hgkVkqi4zO9UoaOkNb6sKipVrR6gXpA1pdytoijXBdopFVbZruNLFo3jCjyYbOezfDGR3UJi8W3zPAGOy2n8B4SB_R5Do7IydKrix2fnKbPN0Oo_5ddzId3fd7k27aPAfdRAHnDmO-EKjcFEKuMEg8R4hUpp6HiUwUE4L5MgtkihmIxA8VBKlyMoG-L9rk4rC3NPq1RlvFS12bojkZN5a422gQe-ryQKVGW2tQxaXJ19JsYs7ivdr4r9oGFwf8PV_h5l82Ho9mA9cDB8QXlDx6fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411500837</pqid></control><display><type>article</type><title>Long‐Term Trends and Solar Responses of the Mesopause Temperatures Observed by SABER During the 2002–2019 Period</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, X. R. ; Sheng, Z. ; Shi, H. Q. ; Weng, L. B. ; Liao, Q. X.</creator><creatorcontrib>Zhao, X. R. ; Sheng, Z. ; Shi, H. Q. ; Weng, L. B. ; Liao, Q. X.</creatorcontrib><description>The global distribution and variations of the monthly mesopause temperature are presented during 2002–2019 covering the latitudes of 83°S to 83°N based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. To investigate the long‐term trend and solar response of the mesopause temperature, a three‐component harmonic fit is first applied to remove the seasonal variation from the monthly temperature data series. Then a multiple linear regression model is performed to residual temperatures versus constant, linear trend, solar activity, and geomagnetic activity terms. In this study, the mesopause temperature shows a cooling trend through all latitudes ranging from ~0 to −0.14 K/year with a mean of −0.075 ± 0.043 K/year. The cooling trends in the Southern Hemisphere are stronger than those in the Northern Hemisphere. For high latitudes (60–80°), significant negative trends can be observed during nonsummertime, while no significant trends are found for summertime. The mesopause temperature shows apparent positive responses to solar activity through all latitudes ranging from 3.03 to 4.80 K per 100 solar flux units (sfu) with a mean of 3.99 ± 0.49 K per 100 sfu, which is more significant and stable in the Northern Hemisphere. There is a pronounced drop for mesopause height at polar latitudes, which reflects the shrinking effect at lower altitudes mainly caused by greenhouse gas cooling. We show that the length of the time interval analyzed strongly influences the results. Our results, obtained from 18‐year SABER observations, are expected to be a robust measure of the mesopause temperature variability. Key Points The mesopause temperature during 2002–2019 shows a cooling trend through all latitudes ranging from ~0 to −0.14 K/year The mesopause temperature shows a positive response to solar activity through all latitudes ranging from 3.03 to 4.80 K per 100 sfu A sufficiently long time interval is necessary for such analyses</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2020JD032418</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Altitude effects ; Broadband ; Cooling ; Cooling effects ; Emission analysis ; Gas cooling ; Geomagnetic activity ; Geomagnetism ; Geophysics ; Greenhouse effect ; Greenhouse gases ; Latitude ; long‐term trends ; Mesopause ; Mesopause temperatures ; Northern Hemisphere ; Radiometry ; Regression analysis ; Regression models ; Seasonal variation ; Seasonal variations ; Solar activity ; Solar flux ; solar response ; Southern Hemisphere ; Temperature ; Temperature data ; Temperature variability ; TIMED/SABER ; Trends</subject><ispartof>Journal of geophysical research. Atmospheres, 2020-06, Vol.125 (11), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3452-bf211400733ef5c291fe8b6433cac66ebabf03307ad8aced23b79f28cf4d3e773</citedby><cites>FETCH-LOGICAL-c3452-bf211400733ef5c291fe8b6433cac66ebabf03307ad8aced23b79f28cf4d3e773</cites><orcidid>0000-0003-3236-280X ; 0000-0003-3599-081X ; 0000-0003-0378-2717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JD032418$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JD032418$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>Zhao, X. R.</creatorcontrib><creatorcontrib>Sheng, Z.</creatorcontrib><creatorcontrib>Shi, H. Q.</creatorcontrib><creatorcontrib>Weng, L. B.</creatorcontrib><creatorcontrib>Liao, Q. X.</creatorcontrib><title>Long‐Term Trends and Solar Responses of the Mesopause Temperatures Observed by SABER During the 2002–2019 Period</title><title>Journal of geophysical research. Atmospheres</title><description>The global distribution and variations of the monthly mesopause temperature are presented during 2002–2019 covering the latitudes of 83°S to 83°N based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. To investigate the long‐term trend and solar response of the mesopause temperature, a three‐component harmonic fit is first applied to remove the seasonal variation from the monthly temperature data series. Then a multiple linear regression model is performed to residual temperatures versus constant, linear trend, solar activity, and geomagnetic activity terms. In this study, the mesopause temperature shows a cooling trend through all latitudes ranging from ~0 to −0.14 K/year with a mean of −0.075 ± 0.043 K/year. The cooling trends in the Southern Hemisphere are stronger than those in the Northern Hemisphere. For high latitudes (60–80°), significant negative trends can be observed during nonsummertime, while no significant trends are found for summertime. The mesopause temperature shows apparent positive responses to solar activity through all latitudes ranging from 3.03 to 4.80 K per 100 solar flux units (sfu) with a mean of 3.99 ± 0.49 K per 100 sfu, which is more significant and stable in the Northern Hemisphere. There is a pronounced drop for mesopause height at polar latitudes, which reflects the shrinking effect at lower altitudes mainly caused by greenhouse gas cooling. We show that the length of the time interval analyzed strongly influences the results. Our results, obtained from 18‐year SABER observations, are expected to be a robust measure of the mesopause temperature variability. Key Points The mesopause temperature during 2002–2019 shows a cooling trend through all latitudes ranging from ~0 to −0.14 K/year The mesopause temperature shows a positive response to solar activity through all latitudes ranging from 3.03 to 4.80 K per 100 sfu A sufficiently long time interval is necessary for such analyses</description><subject>Altitude effects</subject><subject>Broadband</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Emission analysis</subject><subject>Gas cooling</subject><subject>Geomagnetic activity</subject><subject>Geomagnetism</subject><subject>Geophysics</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Latitude</subject><subject>long‐term trends</subject><subject>Mesopause</subject><subject>Mesopause temperatures</subject><subject>Northern Hemisphere</subject><subject>Radiometry</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Solar activity</subject><subject>Solar flux</subject><subject>solar response</subject><subject>Southern Hemisphere</subject><subject>Temperature</subject><subject>Temperature data</subject><subject>Temperature variability</subject><subject>TIMED/SABER</subject><subject>Trends</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwkAQgDdGEwly8wE28Sq6O9vfIwKiBIOBmnhrtu0slkC37rYabjyCiW_Ik1jEGE_OZSaZb37yEXLO2RVnEF4DAzYeMAEOD45IC7gXdoMw9I5_a__5lHSsXbImAiYc12mRaqKLxW77EaFZ08hgkVkqi4zO9UoaOkNb6sKipVrR6gXpA1pdytoijXBdopFVbZruNLFo3jCjyYbOezfDGR3UJi8W3zPAGOy2n8B4SB_R5Do7IydKrix2fnKbPN0Oo_5ddzId3fd7k27aPAfdRAHnDmO-EKjcFEKuMEg8R4hUpp6HiUwUE4L5MgtkihmIxA8VBKlyMoG-L9rk4rC3NPq1RlvFS12bojkZN5a422gQe-ryQKVGW2tQxaXJ19JsYs7ivdr4r9oGFwf8PV_h5l82Ho9mA9cDB8QXlDx6fQ</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>Zhao, X. R.</creator><creator>Sheng, Z.</creator><creator>Shi, H. Q.</creator><creator>Weng, L. B.</creator><creator>Liao, Q. X.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3236-280X</orcidid><orcidid>https://orcid.org/0000-0003-3599-081X</orcidid><orcidid>https://orcid.org/0000-0003-0378-2717</orcidid></search><sort><creationdate>20200616</creationdate><title>Long‐Term Trends and Solar Responses of the Mesopause Temperatures Observed by SABER During the 2002–2019 Period</title><author>Zhao, X. R. ; Sheng, Z. ; Shi, H. Q. ; Weng, L. B. ; Liao, Q. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3452-bf211400733ef5c291fe8b6433cac66ebabf03307ad8aced23b79f28cf4d3e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Altitude effects</topic><topic>Broadband</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Emission analysis</topic><topic>Gas cooling</topic><topic>Geomagnetic activity</topic><topic>Geomagnetism</topic><topic>Geophysics</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Latitude</topic><topic>long‐term trends</topic><topic>Mesopause</topic><topic>Mesopause temperatures</topic><topic>Northern Hemisphere</topic><topic>Radiometry</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Solar activity</topic><topic>Solar flux</topic><topic>solar response</topic><topic>Southern Hemisphere</topic><topic>Temperature</topic><topic>Temperature data</topic><topic>Temperature variability</topic><topic>TIMED/SABER</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, X. R.</creatorcontrib><creatorcontrib>Sheng, Z.</creatorcontrib><creatorcontrib>Shi, H. Q.</creatorcontrib><creatorcontrib>Weng, L. B.</creatorcontrib><creatorcontrib>Liao, Q. X.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, X. R.</au><au>Sheng, Z.</au><au>Shi, H. Q.</au><au>Weng, L. B.</au><au>Liao, Q. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long‐Term Trends and Solar Responses of the Mesopause Temperatures Observed by SABER During the 2002–2019 Period</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2020-06-16</date><risdate>2020</risdate><volume>125</volume><issue>11</issue><epage>n/a</epage><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The global distribution and variations of the monthly mesopause temperature are presented during 2002–2019 covering the latitudes of 83°S to 83°N based on Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. To investigate the long‐term trend and solar response of the mesopause temperature, a three‐component harmonic fit is first applied to remove the seasonal variation from the monthly temperature data series. Then a multiple linear regression model is performed to residual temperatures versus constant, linear trend, solar activity, and geomagnetic activity terms. In this study, the mesopause temperature shows a cooling trend through all latitudes ranging from ~0 to −0.14 K/year with a mean of −0.075 ± 0.043 K/year. The cooling trends in the Southern Hemisphere are stronger than those in the Northern Hemisphere. For high latitudes (60–80°), significant negative trends can be observed during nonsummertime, while no significant trends are found for summertime. The mesopause temperature shows apparent positive responses to solar activity through all latitudes ranging from 3.03 to 4.80 K per 100 solar flux units (sfu) with a mean of 3.99 ± 0.49 K per 100 sfu, which is more significant and stable in the Northern Hemisphere. There is a pronounced drop for mesopause height at polar latitudes, which reflects the shrinking effect at lower altitudes mainly caused by greenhouse gas cooling. We show that the length of the time interval analyzed strongly influences the results. Our results, obtained from 18‐year SABER observations, are expected to be a robust measure of the mesopause temperature variability. Key Points The mesopause temperature during 2002–2019 shows a cooling trend through all latitudes ranging from ~0 to −0.14 K/year The mesopause temperature shows a positive response to solar activity through all latitudes ranging from 3.03 to 4.80 K per 100 sfu A sufficiently long time interval is necessary for such analyses</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020JD032418</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3236-280X</orcidid><orcidid>https://orcid.org/0000-0003-3599-081X</orcidid><orcidid>https://orcid.org/0000-0003-0378-2717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2020-06, Vol.125 (11), p.n/a
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_2411500837
source Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Altitude effects
Broadband
Cooling
Cooling effects
Emission analysis
Gas cooling
Geomagnetic activity
Geomagnetism
Geophysics
Greenhouse effect
Greenhouse gases
Latitude
long‐term trends
Mesopause
Mesopause temperatures
Northern Hemisphere
Radiometry
Regression analysis
Regression models
Seasonal variation
Seasonal variations
Solar activity
Solar flux
solar response
Southern Hemisphere
Temperature
Temperature data
Temperature variability
TIMED/SABER
Trends
title Long‐Term Trends and Solar Responses of the Mesopause Temperatures Observed by SABER During the 2002–2019 Period
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%E2%80%90Term%20Trends%20and%20Solar%20Responses%20of%20the%20Mesopause%20Temperatures%20Observed%20by%20SABER%20During%20the%202002%E2%80%932019%20Period&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Zhao,%20X.%20R.&rft.date=2020-06-16&rft.volume=125&rft.issue=11&rft.epage=n/a&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2020JD032418&rft_dat=%3Cproquest_cross%3E2411500837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411500837&rft_id=info:pmid/&rfr_iscdi=true