Electroosmotic Flow in Capillary Tubes
The paper proposes a computation and theoretical methodology for studying electrokinetic phenomena at the solid-electrolyte interface in terms of the continuum model. The main structure which appears at the solid-electrolyte interface is the double layer. In the system with such a structure, fluid m...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2020-05, Vol.63 (1), p.113-118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 1 |
container_start_page | 113 |
container_title | Russian physics journal |
container_volume | 63 |
creator | Dem’yanov, A. Yu Dinariev, O. Yu Sharaborin, E. L. |
description | The paper proposes a computation and theoretical methodology for studying electrokinetic phenomena at the solid-electrolyte interface in terms of the continuum model. The main structure which appears at the solid-electrolyte interface is the double layer. In the system with such a structure, fluid motion can occur. This is because the additional motion of electrolyte in the double layer due to both external electric field and diverse physicochemical properties of the surface. In turn, via the friction forces, the electrolyte additional motion leads to the fluid motion beyond the double layer. A study of these phenomena is important for the development of interpretation techniques of well-logging operations, identification of electric properties of cores, and various chemical techniques. It is shown that the electroosmotic flow is associated with the electrolyte ion adsorption on a solid surface, both in the absence and presence of the external electric field. |
doi_str_mv | 10.1007/s11182-020-02009-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2411124256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629813515</galeid><sourcerecordid>A629813515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c5c4ba5a0f5ac74f0e99586728b133df1528bc77064cf7cca0b8ea351a8e15243</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC4C01H5tN9lhKq0LBSz2HbJqUlN3NmmwR_71TV_AmYciQeZ_JzIvQPSULSoh8ypRSxTBh5BykxvwCzaiQHNeMqUvISVVipZS8Rjc5HwkBrJIz9LhunR1TjLmLY7DFpo2fReiLlRlC25r0VexOjcu36MqbNru733uO3jfr3eoFb9-eX1fLLbZcqBFbYcvGCEO8MFaWnri6FqqSTDWU872nAjIrJQxjvbTWkEY5wwU1ykGt5HP0MPUdUvw4uTzqYzylHr7UrIQdWclEBarFpDqY1unQ-zgmY-HsXRds7J0P8L6sWK0oNBcAsAmwKeacnNdDCh1spynRZwP1ZKAG8_SPgZoDxCcog7g_uPQ3yz_UN-uGcO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411124256</pqid></control><display><type>article</type><title>Electroosmotic Flow in Capillary Tubes</title><source>SpringerNature Journals</source><creator>Dem’yanov, A. Yu ; Dinariev, O. Yu ; Sharaborin, E. L.</creator><creatorcontrib>Dem’yanov, A. Yu ; Dinariev, O. Yu ; Sharaborin, E. L.</creatorcontrib><description>The paper proposes a computation and theoretical methodology for studying electrokinetic phenomena at the solid-electrolyte interface in terms of the continuum model. The main structure which appears at the solid-electrolyte interface is the double layer. In the system with such a structure, fluid motion can occur. This is because the additional motion of electrolyte in the double layer due to both external electric field and diverse physicochemical properties of the surface. In turn, via the friction forces, the electrolyte additional motion leads to the fluid motion beyond the double layer. A study of these phenomena is important for the development of interpretation techniques of well-logging operations, identification of electric properties of cores, and various chemical techniques. It is shown that the electroosmotic flow is associated with the electrolyte ion adsorption on a solid surface, both in the absence and presence of the external electric field.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-020-02009-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Capillary flow ; Capillary tubes ; Condensed Matter Physics ; Condensed-State Physics ; Continuum modeling ; Electric double layer ; Electric fields ; Electric properties ; Electrokinetics ; Electrolytes ; Electroosmosis ; Hadrons ; Heavy Ions ; Ion adsorption ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Numerical analysis ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Solid surfaces ; Theoretical</subject><ispartof>Russian physics journal, 2020-05, Vol.63 (1), p.113-118</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c5c4ba5a0f5ac74f0e99586728b133df1528bc77064cf7cca0b8ea351a8e15243</citedby><cites>FETCH-LOGICAL-c358t-c5c4ba5a0f5ac74f0e99586728b133df1528bc77064cf7cca0b8ea351a8e15243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-020-02009-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-020-02009-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dem’yanov, A. Yu</creatorcontrib><creatorcontrib>Dinariev, O. Yu</creatorcontrib><creatorcontrib>Sharaborin, E. L.</creatorcontrib><title>Electroosmotic Flow in Capillary Tubes</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The paper proposes a computation and theoretical methodology for studying electrokinetic phenomena at the solid-electrolyte interface in terms of the continuum model. The main structure which appears at the solid-electrolyte interface is the double layer. In the system with such a structure, fluid motion can occur. This is because the additional motion of electrolyte in the double layer due to both external electric field and diverse physicochemical properties of the surface. In turn, via the friction forces, the electrolyte additional motion leads to the fluid motion beyond the double layer. A study of these phenomena is important for the development of interpretation techniques of well-logging operations, identification of electric properties of cores, and various chemical techniques. It is shown that the electroosmotic flow is associated with the electrolyte ion adsorption on a solid surface, both in the absence and presence of the external electric field.</description><subject>Analysis</subject><subject>Capillary flow</subject><subject>Capillary tubes</subject><subject>Condensed Matter Physics</subject><subject>Condensed-State Physics</subject><subject>Continuum modeling</subject><subject>Electric double layer</subject><subject>Electric fields</subject><subject>Electric properties</subject><subject>Electrokinetics</subject><subject>Electrolytes</subject><subject>Electroosmosis</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Ion adsorption</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Numerical analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid surfaces</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC4C01H5tN9lhKq0LBSz2HbJqUlN3NmmwR_71TV_AmYciQeZ_JzIvQPSULSoh8ypRSxTBh5BykxvwCzaiQHNeMqUvISVVipZS8Rjc5HwkBrJIz9LhunR1TjLmLY7DFpo2fReiLlRlC25r0VexOjcu36MqbNru733uO3jfr3eoFb9-eX1fLLbZcqBFbYcvGCEO8MFaWnri6FqqSTDWU872nAjIrJQxjvbTWkEY5wwU1ykGt5HP0MPUdUvw4uTzqYzylHr7UrIQdWclEBarFpDqY1unQ-zgmY-HsXRds7J0P8L6sWK0oNBcAsAmwKeacnNdDCh1spynRZwP1ZKAG8_SPgZoDxCcog7g_uPQ3yz_UN-uGcO4</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Dem’yanov, A. Yu</creator><creator>Dinariev, O. Yu</creator><creator>Sharaborin, E. L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Electroosmotic Flow in Capillary Tubes</title><author>Dem’yanov, A. Yu ; Dinariev, O. Yu ; Sharaborin, E. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c5c4ba5a0f5ac74f0e99586728b133df1528bc77064cf7cca0b8ea351a8e15243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Capillary flow</topic><topic>Capillary tubes</topic><topic>Condensed Matter Physics</topic><topic>Condensed-State Physics</topic><topic>Continuum modeling</topic><topic>Electric double layer</topic><topic>Electric fields</topic><topic>Electric properties</topic><topic>Electrokinetics</topic><topic>Electrolytes</topic><topic>Electroosmosis</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Ion adsorption</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Numerical analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid surfaces</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dem’yanov, A. Yu</creatorcontrib><creatorcontrib>Dinariev, O. Yu</creatorcontrib><creatorcontrib>Sharaborin, E. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dem’yanov, A. Yu</au><au>Dinariev, O. Yu</au><au>Sharaborin, E. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroosmotic Flow in Capillary Tubes</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>63</volume><issue>1</issue><spage>113</spage><epage>118</epage><pages>113-118</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The paper proposes a computation and theoretical methodology for studying electrokinetic phenomena at the solid-electrolyte interface in terms of the continuum model. The main structure which appears at the solid-electrolyte interface is the double layer. In the system with such a structure, fluid motion can occur. This is because the additional motion of electrolyte in the double layer due to both external electric field and diverse physicochemical properties of the surface. In turn, via the friction forces, the electrolyte additional motion leads to the fluid motion beyond the double layer. A study of these phenomena is important for the development of interpretation techniques of well-logging operations, identification of electric properties of cores, and various chemical techniques. It is shown that the electroosmotic flow is associated with the electrolyte ion adsorption on a solid surface, both in the absence and presence of the external electric field.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-020-02009-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2020-05, Vol.63 (1), p.113-118 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_2411124256 |
source | SpringerNature Journals |
subjects | Analysis Capillary flow Capillary tubes Condensed Matter Physics Condensed-State Physics Continuum modeling Electric double layer Electric fields Electric properties Electrokinetics Electrolytes Electroosmosis Hadrons Heavy Ions Ion adsorption Lasers Mathematical and Computational Physics Nuclear Physics Numerical analysis Optical Devices Optics Photonics Physics Physics and Astronomy Solid surfaces Theoretical |
title | Electroosmotic Flow in Capillary Tubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroosmotic%20Flow%20in%20Capillary%20Tubes&rft.jtitle=Russian%20physics%20journal&rft.au=Dem%E2%80%99yanov,%20A.%20Yu&rft.date=2020-05-01&rft.volume=63&rft.issue=1&rft.spage=113&rft.epage=118&rft.pages=113-118&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-020-02009-3&rft_dat=%3Cgale_proqu%3EA629813515%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411124256&rft_id=info:pmid/&rft_galeid=A629813515&rfr_iscdi=true |