Electroosmotic Flow in Capillary Tubes

The paper proposes a computation and theoretical methodology for studying electrokinetic phenomena at the solid-electrolyte interface in terms of the continuum model. The main structure which appears at the solid-electrolyte interface is the double layer. In the system with such a structure, fluid m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2020-05, Vol.63 (1), p.113-118
Hauptverfasser: Dem’yanov, A. Yu, Dinariev, O. Yu, Sharaborin, E. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 113
container_title Russian physics journal
container_volume 63
creator Dem’yanov, A. Yu
Dinariev, O. Yu
Sharaborin, E. L.
description The paper proposes a computation and theoretical methodology for studying electrokinetic phenomena at the solid-electrolyte interface in terms of the continuum model. The main structure which appears at the solid-electrolyte interface is the double layer. In the system with such a structure, fluid motion can occur. This is because the additional motion of electrolyte in the double layer due to both external electric field and diverse physicochemical properties of the surface. In turn, via the friction forces, the electrolyte additional motion leads to the fluid motion beyond the double layer. A study of these phenomena is important for the development of interpretation techniques of well-logging operations, identification of electric properties of cores, and various chemical techniques. It is shown that the electroosmotic flow is associated with the electrolyte ion adsorption on a solid surface, both in the absence and presence of the external electric field.
doi_str_mv 10.1007/s11182-020-02009-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2411124256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629813515</galeid><sourcerecordid>A629813515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c5c4ba5a0f5ac74f0e99586728b133df1528bc77064cf7cca0b8ea351a8e15243</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC4C01H5tN9lhKq0LBSz2HbJqUlN3NmmwR_71TV_AmYciQeZ_JzIvQPSULSoh8ypRSxTBh5BykxvwCzaiQHNeMqUvISVVipZS8Rjc5HwkBrJIz9LhunR1TjLmLY7DFpo2fReiLlRlC25r0VexOjcu36MqbNru733uO3jfr3eoFb9-eX1fLLbZcqBFbYcvGCEO8MFaWnri6FqqSTDWU872nAjIrJQxjvbTWkEY5wwU1ykGt5HP0MPUdUvw4uTzqYzylHr7UrIQdWclEBarFpDqY1unQ-zgmY-HsXRds7J0P8L6sWK0oNBcAsAmwKeacnNdDCh1spynRZwP1ZKAG8_SPgZoDxCcog7g_uPQ3yz_UN-uGcO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411124256</pqid></control><display><type>article</type><title>Electroosmotic Flow in Capillary Tubes</title><source>SpringerNature Journals</source><creator>Dem’yanov, A. Yu ; Dinariev, O. Yu ; Sharaborin, E. L.</creator><creatorcontrib>Dem’yanov, A. Yu ; Dinariev, O. Yu ; Sharaborin, E. L.</creatorcontrib><description>The paper proposes a computation and theoretical methodology for studying electrokinetic phenomena at the solid-electrolyte interface in terms of the continuum model. The main structure which appears at the solid-electrolyte interface is the double layer. In the system with such a structure, fluid motion can occur. This is because the additional motion of electrolyte in the double layer due to both external electric field and diverse physicochemical properties of the surface. In turn, via the friction forces, the electrolyte additional motion leads to the fluid motion beyond the double layer. A study of these phenomena is important for the development of interpretation techniques of well-logging operations, identification of electric properties of cores, and various chemical techniques. It is shown that the electroosmotic flow is associated with the electrolyte ion adsorption on a solid surface, both in the absence and presence of the external electric field.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-020-02009-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Capillary flow ; Capillary tubes ; Condensed Matter Physics ; Condensed-State Physics ; Continuum modeling ; Electric double layer ; Electric fields ; Electric properties ; Electrokinetics ; Electrolytes ; Electroosmosis ; Hadrons ; Heavy Ions ; Ion adsorption ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Numerical analysis ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Solid surfaces ; Theoretical</subject><ispartof>Russian physics journal, 2020-05, Vol.63 (1), p.113-118</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c5c4ba5a0f5ac74f0e99586728b133df1528bc77064cf7cca0b8ea351a8e15243</citedby><cites>FETCH-LOGICAL-c358t-c5c4ba5a0f5ac74f0e99586728b133df1528bc77064cf7cca0b8ea351a8e15243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-020-02009-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-020-02009-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dem’yanov, A. Yu</creatorcontrib><creatorcontrib>Dinariev, O. Yu</creatorcontrib><creatorcontrib>Sharaborin, E. L.</creatorcontrib><title>Electroosmotic Flow in Capillary Tubes</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The paper proposes a computation and theoretical methodology for studying electrokinetic phenomena at the solid-electrolyte interface in terms of the continuum model. The main structure which appears at the solid-electrolyte interface is the double layer. In the system with such a structure, fluid motion can occur. This is because the additional motion of electrolyte in the double layer due to both external electric field and diverse physicochemical properties of the surface. In turn, via the friction forces, the electrolyte additional motion leads to the fluid motion beyond the double layer. A study of these phenomena is important for the development of interpretation techniques of well-logging operations, identification of electric properties of cores, and various chemical techniques. It is shown that the electroosmotic flow is associated with the electrolyte ion adsorption on a solid surface, both in the absence and presence of the external electric field.</description><subject>Analysis</subject><subject>Capillary flow</subject><subject>Capillary tubes</subject><subject>Condensed Matter Physics</subject><subject>Condensed-State Physics</subject><subject>Continuum modeling</subject><subject>Electric double layer</subject><subject>Electric fields</subject><subject>Electric properties</subject><subject>Electrokinetics</subject><subject>Electrolytes</subject><subject>Electroosmosis</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Ion adsorption</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Numerical analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid surfaces</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC4C01H5tN9lhKq0LBSz2HbJqUlN3NmmwR_71TV_AmYciQeZ_JzIvQPSULSoh8ypRSxTBh5BykxvwCzaiQHNeMqUvISVVipZS8Rjc5HwkBrJIz9LhunR1TjLmLY7DFpo2fReiLlRlC25r0VexOjcu36MqbNru733uO3jfr3eoFb9-eX1fLLbZcqBFbYcvGCEO8MFaWnri6FqqSTDWU872nAjIrJQxjvbTWkEY5wwU1ykGt5HP0MPUdUvw4uTzqYzylHr7UrIQdWclEBarFpDqY1unQ-zgmY-HsXRds7J0P8L6sWK0oNBcAsAmwKeacnNdDCh1spynRZwP1ZKAG8_SPgZoDxCcog7g_uPQ3yz_UN-uGcO4</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Dem’yanov, A. Yu</creator><creator>Dinariev, O. Yu</creator><creator>Sharaborin, E. L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Electroosmotic Flow in Capillary Tubes</title><author>Dem’yanov, A. Yu ; Dinariev, O. Yu ; Sharaborin, E. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c5c4ba5a0f5ac74f0e99586728b133df1528bc77064cf7cca0b8ea351a8e15243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Capillary flow</topic><topic>Capillary tubes</topic><topic>Condensed Matter Physics</topic><topic>Condensed-State Physics</topic><topic>Continuum modeling</topic><topic>Electric double layer</topic><topic>Electric fields</topic><topic>Electric properties</topic><topic>Electrokinetics</topic><topic>Electrolytes</topic><topic>Electroosmosis</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Ion adsorption</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Numerical analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid surfaces</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dem’yanov, A. Yu</creatorcontrib><creatorcontrib>Dinariev, O. Yu</creatorcontrib><creatorcontrib>Sharaborin, E. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dem’yanov, A. Yu</au><au>Dinariev, O. Yu</au><au>Sharaborin, E. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroosmotic Flow in Capillary Tubes</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>63</volume><issue>1</issue><spage>113</spage><epage>118</epage><pages>113-118</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The paper proposes a computation and theoretical methodology for studying electrokinetic phenomena at the solid-electrolyte interface in terms of the continuum model. The main structure which appears at the solid-electrolyte interface is the double layer. In the system with such a structure, fluid motion can occur. This is because the additional motion of electrolyte in the double layer due to both external electric field and diverse physicochemical properties of the surface. In turn, via the friction forces, the electrolyte additional motion leads to the fluid motion beyond the double layer. A study of these phenomena is important for the development of interpretation techniques of well-logging operations, identification of electric properties of cores, and various chemical techniques. It is shown that the electroosmotic flow is associated with the electrolyte ion adsorption on a solid surface, both in the absence and presence of the external electric field.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-020-02009-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2020-05, Vol.63 (1), p.113-118
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_2411124256
source SpringerNature Journals
subjects Analysis
Capillary flow
Capillary tubes
Condensed Matter Physics
Condensed-State Physics
Continuum modeling
Electric double layer
Electric fields
Electric properties
Electrokinetics
Electrolytes
Electroosmosis
Hadrons
Heavy Ions
Ion adsorption
Lasers
Mathematical and Computational Physics
Nuclear Physics
Numerical analysis
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Solid surfaces
Theoretical
title Electroosmotic Flow in Capillary Tubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroosmotic%20Flow%20in%20Capillary%20Tubes&rft.jtitle=Russian%20physics%20journal&rft.au=Dem%E2%80%99yanov,%20A.%20Yu&rft.date=2020-05-01&rft.volume=63&rft.issue=1&rft.spage=113&rft.epage=118&rft.pages=113-118&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-020-02009-3&rft_dat=%3Cgale_proqu%3EA629813515%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411124256&rft_id=info:pmid/&rft_galeid=A629813515&rfr_iscdi=true