Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization
Single-objective black box optimization (also known as zeroth-order optimization) is the process of minimizing a scalar objective \(f(x)\), given evaluations at adaptively chosen inputs \(x\). In this paper, we consider multi-objective optimization, where \(f(x)\) outputs a vector of possibly compet...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Golovin, Daniel Zhang, Qiuyi |
description | Single-objective black box optimization (also known as zeroth-order optimization) is the process of minimizing a scalar objective \(f(x)\), given evaluations at adaptively chosen inputs \(x\). In this paper, we consider multi-objective optimization, where \(f(x)\) outputs a vector of possibly competing objectives and the goal is to converge to the Pareto frontier. Quantitatively, we wish to maximize the standard hypervolume indicator metric, which measures the dominated hypervolume of the entire set of chosen inputs. In this paper, we introduce a novel scalarization function, which we term the hypervolume scalarization, and show that drawing random scalarizations from an appropriately chosen distribution can be used to efficiently approximate the hypervolume indicator metric. We utilize this connection to show that Bayesian optimization with our scalarization via common acquisition functions, such as Thompson Sampling or Upper Confidence Bound, provably converges to the whole Pareto frontier by deriving tight hypervolume regret bounds on the order of \(\widetilde{O}(\sqrt{T})\). Furthermore, we highlight the general utility of our scalarization framework by showing that any provably convergent single-objective optimization process can be effortlessly converted to a multi-objective optimization process with provable convergence guarantees. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2410887566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410887566</sourcerecordid><originalsourceid>FETCH-proquest_journals_24108875663</originalsourceid><addsrcrecordid>eNqNi8sKgkAUQIcgSMp_GGgtjDO-1kbhJoweaxlthLHRa_OQ6utr4Qe0OotzzgJ5lLEwyCJKV8g3piOE0CSlccw8dDvz4Q49Lt6j0BMo1wt8abjiWn64lTAY3ILGJw0Tr5XAR6esDMq6E42Vk8C54s0D5_DC5WhlP08btGy5MsKfuUbbw_66K4JRw9MJY6sOnB5-qqJRSLIsjZOE_Vd9ARHGQWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410887566</pqid></control><display><type>article</type><title>Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization</title><source>Free E- Journals</source><creator>Golovin, Daniel ; Zhang, Qiuyi</creator><creatorcontrib>Golovin, Daniel ; Zhang, Qiuyi</creatorcontrib><description>Single-objective black box optimization (also known as zeroth-order optimization) is the process of minimizing a scalar objective \(f(x)\), given evaluations at adaptively chosen inputs \(x\). In this paper, we consider multi-objective optimization, where \(f(x)\) outputs a vector of possibly competing objectives and the goal is to converge to the Pareto frontier. Quantitatively, we wish to maximize the standard hypervolume indicator metric, which measures the dominated hypervolume of the entire set of chosen inputs. In this paper, we introduce a novel scalarization function, which we term the hypervolume scalarization, and show that drawing random scalarizations from an appropriately chosen distribution can be used to efficiently approximate the hypervolume indicator metric. We utilize this connection to show that Bayesian optimization with our scalarization via common acquisition functions, such as Thompson Sampling or Upper Confidence Bound, provably converges to the whole Pareto frontier by deriving tight hypervolume regret bounds on the order of \(\widetilde{O}(\sqrt{T})\). Furthermore, we highlight the general utility of our scalarization framework by showing that any provably convergent single-objective optimization process can be effortlessly converted to a multi-objective optimization process with provable convergence guarantees.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Multiple objective analysis ; Optimization ; Pareto optimization</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Golovin, Daniel</creatorcontrib><creatorcontrib>Zhang, Qiuyi</creatorcontrib><title>Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization</title><title>arXiv.org</title><description>Single-objective black box optimization (also known as zeroth-order optimization) is the process of minimizing a scalar objective \(f(x)\), given evaluations at adaptively chosen inputs \(x\). In this paper, we consider multi-objective optimization, where \(f(x)\) outputs a vector of possibly competing objectives and the goal is to converge to the Pareto frontier. Quantitatively, we wish to maximize the standard hypervolume indicator metric, which measures the dominated hypervolume of the entire set of chosen inputs. In this paper, we introduce a novel scalarization function, which we term the hypervolume scalarization, and show that drawing random scalarizations from an appropriately chosen distribution can be used to efficiently approximate the hypervolume indicator metric. We utilize this connection to show that Bayesian optimization with our scalarization via common acquisition functions, such as Thompson Sampling or Upper Confidence Bound, provably converges to the whole Pareto frontier by deriving tight hypervolume regret bounds on the order of \(\widetilde{O}(\sqrt{T})\). Furthermore, we highlight the general utility of our scalarization framework by showing that any provably convergent single-objective optimization process can be effortlessly converted to a multi-objective optimization process with provable convergence guarantees.</description><subject>Convergence</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKgkAUQIcgSMp_GGgtjDO-1kbhJoweaxlthLHRa_OQ6utr4Qe0OotzzgJ5lLEwyCJKV8g3piOE0CSlccw8dDvz4Q49Lt6j0BMo1wt8abjiWn64lTAY3ILGJw0Tr5XAR6esDMq6E42Vk8C54s0D5_DC5WhlP08btGy5MsKfuUbbw_66K4JRw9MJY6sOnB5-qqJRSLIsjZOE_Vd9ARHGQWI</recordid><startdate>20200609</startdate><enddate>20200609</enddate><creator>Golovin, Daniel</creator><creator>Zhang, Qiuyi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200609</creationdate><title>Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization</title><author>Golovin, Daniel ; Zhang, Qiuyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24108875663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convergence</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Golovin, Daniel</creatorcontrib><creatorcontrib>Zhang, Qiuyi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golovin, Daniel</au><au>Zhang, Qiuyi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization</atitle><jtitle>arXiv.org</jtitle><date>2020-06-09</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Single-objective black box optimization (also known as zeroth-order optimization) is the process of minimizing a scalar objective \(f(x)\), given evaluations at adaptively chosen inputs \(x\). In this paper, we consider multi-objective optimization, where \(f(x)\) outputs a vector of possibly competing objectives and the goal is to converge to the Pareto frontier. Quantitatively, we wish to maximize the standard hypervolume indicator metric, which measures the dominated hypervolume of the entire set of chosen inputs. In this paper, we introduce a novel scalarization function, which we term the hypervolume scalarization, and show that drawing random scalarizations from an appropriately chosen distribution can be used to efficiently approximate the hypervolume indicator metric. We utilize this connection to show that Bayesian optimization with our scalarization via common acquisition functions, such as Thompson Sampling or Upper Confidence Bound, provably converges to the whole Pareto frontier by deriving tight hypervolume regret bounds on the order of \(\widetilde{O}(\sqrt{T})\). Furthermore, we highlight the general utility of our scalarization framework by showing that any provably convergent single-objective optimization process can be effortlessly converted to a multi-objective optimization process with provable convergence guarantees.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2410887566 |
source | Free E- Journals |
subjects | Convergence Multiple objective analysis Optimization Pareto optimization |
title | Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Random%20Hypervolume%20Scalarizations%20for%20Provable%20Multi-Objective%20Black%20Box%20Optimization&rft.jtitle=arXiv.org&rft.au=Golovin,%20Daniel&rft.date=2020-06-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2410887566%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410887566&rft_id=info:pmid/&rfr_iscdi=true |