Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage

In the age of information globalization, research on the mechanism of propagation will help mitigate the bad influence of rumors. Based on the classical rumor propagation model, this paper further analyzes the internal mechanism of the stochastic rumor propagation model incorporating media coverage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-07, Vol.43 (11), p.6903-6920
Hauptverfasser: Huo, Liang'an, Dong, Yafang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6920
container_issue 11
container_start_page 6903
container_title Mathematical methods in the applied sciences
container_volume 43
creator Huo, Liang'an
Dong, Yafang
description In the age of information globalization, research on the mechanism of propagation will help mitigate the bad influence of rumors. Based on the classical rumor propagation model, this paper further analyzes the internal mechanism of the stochastic rumor propagation model incorporating media coverage with white noise. We investigate the existence of a unique global positive solution to the model and study the dynamic properties of the solutions around the rumor‐free and local equilibrium points of the deterministic model. Furthermore, we establish sufficient conditions for the existence of traversal static distribution in the model. Numerical simulation shows that the role of media coverage is crucial to reduce the rumor propagation scale. The larger the coverage rate is, the smaller the rumor propagation scale is.
doi_str_mv 10.1002/mma.6436
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2410879363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410879363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-6b40beea262af4d6279c54295669f07b882d664999c97cbe68faeb9741b94f2f3</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKvgIwTcuJmaZNJksizFP2hxoysXIZNJ2pTJZEymyvj0ptatqwuXw_fdewC4xmiGESJ33qsZoyU7AROMhCgw5ewUTBDmqKAE03NwkdIOIVRhTCbgfdGpdvx23QYOWwObsVPe6QSDhQqmIeitSoPTMO59iLCPoVcbNbjQQR8a00LX6RD7EPMuR3jTOAV1-DRRbcwlOLOqTebqb07B28P96_KpWL08Pi8Xq0ITUbKC1RTVxijCiLK0YYQLPadEzBkTFvG6qkjDGBVCaMF1bVhllakFp7gW1BJbTsHNMTef97E3aZC7sI_5ryQJxajiuaXM1O2R0jGkFI2VfXRexVFiJA_qZFYnD-oyWhzRL9ea8V9OrteLX_4H9RBwRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410879363</pqid></control><display><type>article</type><title>Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huo, Liang'an ; Dong, Yafang</creator><creatorcontrib>Huo, Liang'an ; Dong, Yafang</creatorcontrib><description>In the age of information globalization, research on the mechanism of propagation will help mitigate the bad influence of rumors. Based on the classical rumor propagation model, this paper further analyzes the internal mechanism of the stochastic rumor propagation model incorporating media coverage with white noise. We investigate the existence of a unique global positive solution to the model and study the dynamic properties of the solutions around the rumor‐free and local equilibrium points of the deterministic model. Furthermore, we establish sufficient conditions for the existence of traversal static distribution in the model. Numerical simulation shows that the role of media coverage is crucial to reduce the rumor propagation scale. The larger the coverage rate is, the smaller the rumor propagation scale is.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6436</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Computer simulation ; ergodic process ; Globalization ; Mathematical models ; Media coverage ; Noise propagation ; Propagation ; rumor propagation ; stochastic process ; White noise</subject><ispartof>Mathematical methods in the applied sciences, 2020-07, Vol.43 (11), p.6903-6920</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-6b40beea262af4d6279c54295669f07b882d664999c97cbe68faeb9741b94f2f3</citedby><cites>FETCH-LOGICAL-c2936-6b40beea262af4d6279c54295669f07b882d664999c97cbe68faeb9741b94f2f3</cites><orcidid>0000-0002-5189-3609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6436$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6436$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Huo, Liang'an</creatorcontrib><creatorcontrib>Dong, Yafang</creatorcontrib><title>Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage</title><title>Mathematical methods in the applied sciences</title><description>In the age of information globalization, research on the mechanism of propagation will help mitigate the bad influence of rumors. Based on the classical rumor propagation model, this paper further analyzes the internal mechanism of the stochastic rumor propagation model incorporating media coverage with white noise. We investigate the existence of a unique global positive solution to the model and study the dynamic properties of the solutions around the rumor‐free and local equilibrium points of the deterministic model. Furthermore, we establish sufficient conditions for the existence of traversal static distribution in the model. Numerical simulation shows that the role of media coverage is crucial to reduce the rumor propagation scale. The larger the coverage rate is, the smaller the rumor propagation scale is.</description><subject>Computer simulation</subject><subject>ergodic process</subject><subject>Globalization</subject><subject>Mathematical models</subject><subject>Media coverage</subject><subject>Noise propagation</subject><subject>Propagation</subject><subject>rumor propagation</subject><subject>stochastic process</subject><subject>White noise</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKvgIwTcuJmaZNJksizFP2hxoysXIZNJ2pTJZEymyvj0ptatqwuXw_fdewC4xmiGESJ33qsZoyU7AROMhCgw5ewUTBDmqKAE03NwkdIOIVRhTCbgfdGpdvx23QYOWwObsVPe6QSDhQqmIeitSoPTMO59iLCPoVcbNbjQQR8a00LX6RD7EPMuR3jTOAV1-DRRbcwlOLOqTebqb07B28P96_KpWL08Pi8Xq0ITUbKC1RTVxijCiLK0YYQLPadEzBkTFvG6qkjDGBVCaMF1bVhllakFp7gW1BJbTsHNMTef97E3aZC7sI_5ryQJxajiuaXM1O2R0jGkFI2VfXRexVFiJA_qZFYnD-oyWhzRL9ea8V9OrteLX_4H9RBwRg</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Huo, Liang'an</creator><creator>Dong, Yafang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5189-3609</orcidid></search><sort><creationdate>20200730</creationdate><title>Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage</title><author>Huo, Liang'an ; Dong, Yafang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-6b40beea262af4d6279c54295669f07b882d664999c97cbe68faeb9741b94f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>ergodic process</topic><topic>Globalization</topic><topic>Mathematical models</topic><topic>Media coverage</topic><topic>Noise propagation</topic><topic>Propagation</topic><topic>rumor propagation</topic><topic>stochastic process</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Liang'an</creatorcontrib><creatorcontrib>Dong, Yafang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Liang'an</au><au>Dong, Yafang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-07-30</date><risdate>2020</risdate><volume>43</volume><issue>11</issue><spage>6903</spage><epage>6920</epage><pages>6903-6920</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In the age of information globalization, research on the mechanism of propagation will help mitigate the bad influence of rumors. Based on the classical rumor propagation model, this paper further analyzes the internal mechanism of the stochastic rumor propagation model incorporating media coverage with white noise. We investigate the existence of a unique global positive solution to the model and study the dynamic properties of the solutions around the rumor‐free and local equilibrium points of the deterministic model. Furthermore, we establish sufficient conditions for the existence of traversal static distribution in the model. Numerical simulation shows that the role of media coverage is crucial to reduce the rumor propagation scale. The larger the coverage rate is, the smaller the rumor propagation scale is.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6436</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5189-3609</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-07, Vol.43 (11), p.6903-6920
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2410879363
source Wiley Online Library Journals Frontfile Complete
subjects Computer simulation
ergodic process
Globalization
Mathematical models
Media coverage
Noise propagation
Propagation
rumor propagation
stochastic process
White noise
title Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20dynamics%20of%20a%20stochastic%20rumor%20propagation%20model%20incorporating%20media%20coverage&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Huo,%20Liang'an&rft.date=2020-07-30&rft.volume=43&rft.issue=11&rft.spage=6903&rft.epage=6920&rft.pages=6903-6920&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6436&rft_dat=%3Cproquest_cross%3E2410879363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410879363&rft_id=info:pmid/&rfr_iscdi=true