Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage
In the age of information globalization, research on the mechanism of propagation will help mitigate the bad influence of rumors. Based on the classical rumor propagation model, this paper further analyzes the internal mechanism of the stochastic rumor propagation model incorporating media coverage...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2020-07, Vol.43 (11), p.6903-6920 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6920 |
---|---|
container_issue | 11 |
container_start_page | 6903 |
container_title | Mathematical methods in the applied sciences |
container_volume | 43 |
creator | Huo, Liang'an Dong, Yafang |
description | In the age of information globalization, research on the mechanism of propagation will help mitigate the bad influence of rumors. Based on the classical rumor propagation model, this paper further analyzes the internal mechanism of the stochastic rumor propagation model incorporating media coverage with white noise. We investigate the existence of a unique global positive solution to the model and study the dynamic properties of the solutions around the rumor‐free and local equilibrium points of the deterministic model. Furthermore, we establish sufficient conditions for the existence of traversal static distribution in the model. Numerical simulation shows that the role of media coverage is crucial to reduce the rumor propagation scale. The larger the coverage rate is, the smaller the rumor propagation scale is. |
doi_str_mv | 10.1002/mma.6436 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2410879363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410879363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-6b40beea262af4d6279c54295669f07b882d664999c97cbe68faeb9741b94f2f3</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKvgIwTcuJmaZNJksizFP2hxoysXIZNJ2pTJZEymyvj0ptatqwuXw_fdewC4xmiGESJ33qsZoyU7AROMhCgw5ewUTBDmqKAE03NwkdIOIVRhTCbgfdGpdvx23QYOWwObsVPe6QSDhQqmIeitSoPTMO59iLCPoVcbNbjQQR8a00LX6RD7EPMuR3jTOAV1-DRRbcwlOLOqTebqb07B28P96_KpWL08Pi8Xq0ITUbKC1RTVxijCiLK0YYQLPadEzBkTFvG6qkjDGBVCaMF1bVhllakFp7gW1BJbTsHNMTef97E3aZC7sI_5ryQJxajiuaXM1O2R0jGkFI2VfXRexVFiJA_qZFYnD-oyWhzRL9ea8V9OrteLX_4H9RBwRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410879363</pqid></control><display><type>article</type><title>Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huo, Liang'an ; Dong, Yafang</creator><creatorcontrib>Huo, Liang'an ; Dong, Yafang</creatorcontrib><description>In the age of information globalization, research on the mechanism of propagation will help mitigate the bad influence of rumors. Based on the classical rumor propagation model, this paper further analyzes the internal mechanism of the stochastic rumor propagation model incorporating media coverage with white noise. We investigate the existence of a unique global positive solution to the model and study the dynamic properties of the solutions around the rumor‐free and local equilibrium points of the deterministic model. Furthermore, we establish sufficient conditions for the existence of traversal static distribution in the model. Numerical simulation shows that the role of media coverage is crucial to reduce the rumor propagation scale. The larger the coverage rate is, the smaller the rumor propagation scale is.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6436</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Computer simulation ; ergodic process ; Globalization ; Mathematical models ; Media coverage ; Noise propagation ; Propagation ; rumor propagation ; stochastic process ; White noise</subject><ispartof>Mathematical methods in the applied sciences, 2020-07, Vol.43 (11), p.6903-6920</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-6b40beea262af4d6279c54295669f07b882d664999c97cbe68faeb9741b94f2f3</citedby><cites>FETCH-LOGICAL-c2936-6b40beea262af4d6279c54295669f07b882d664999c97cbe68faeb9741b94f2f3</cites><orcidid>0000-0002-5189-3609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6436$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6436$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Huo, Liang'an</creatorcontrib><creatorcontrib>Dong, Yafang</creatorcontrib><title>Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage</title><title>Mathematical methods in the applied sciences</title><description>In the age of information globalization, research on the mechanism of propagation will help mitigate the bad influence of rumors. Based on the classical rumor propagation model, this paper further analyzes the internal mechanism of the stochastic rumor propagation model incorporating media coverage with white noise. We investigate the existence of a unique global positive solution to the model and study the dynamic properties of the solutions around the rumor‐free and local equilibrium points of the deterministic model. Furthermore, we establish sufficient conditions for the existence of traversal static distribution in the model. Numerical simulation shows that the role of media coverage is crucial to reduce the rumor propagation scale. The larger the coverage rate is, the smaller the rumor propagation scale is.</description><subject>Computer simulation</subject><subject>ergodic process</subject><subject>Globalization</subject><subject>Mathematical models</subject><subject>Media coverage</subject><subject>Noise propagation</subject><subject>Propagation</subject><subject>rumor propagation</subject><subject>stochastic process</subject><subject>White noise</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKvgIwTcuJmaZNJksizFP2hxoysXIZNJ2pTJZEymyvj0ptatqwuXw_fdewC4xmiGESJ33qsZoyU7AROMhCgw5ewUTBDmqKAE03NwkdIOIVRhTCbgfdGpdvx23QYOWwObsVPe6QSDhQqmIeitSoPTMO59iLCPoVcbNbjQQR8a00LX6RD7EPMuR3jTOAV1-DRRbcwlOLOqTebqb07B28P96_KpWL08Pi8Xq0ITUbKC1RTVxijCiLK0YYQLPadEzBkTFvG6qkjDGBVCaMF1bVhllakFp7gW1BJbTsHNMTef97E3aZC7sI_5ryQJxajiuaXM1O2R0jGkFI2VfXRexVFiJA_qZFYnD-oyWhzRL9ea8V9OrteLX_4H9RBwRg</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Huo, Liang'an</creator><creator>Dong, Yafang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5189-3609</orcidid></search><sort><creationdate>20200730</creationdate><title>Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage</title><author>Huo, Liang'an ; Dong, Yafang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-6b40beea262af4d6279c54295669f07b882d664999c97cbe68faeb9741b94f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>ergodic process</topic><topic>Globalization</topic><topic>Mathematical models</topic><topic>Media coverage</topic><topic>Noise propagation</topic><topic>Propagation</topic><topic>rumor propagation</topic><topic>stochastic process</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Liang'an</creatorcontrib><creatorcontrib>Dong, Yafang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Liang'an</au><au>Dong, Yafang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-07-30</date><risdate>2020</risdate><volume>43</volume><issue>11</issue><spage>6903</spage><epage>6920</epage><pages>6903-6920</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In the age of information globalization, research on the mechanism of propagation will help mitigate the bad influence of rumors. Based on the classical rumor propagation model, this paper further analyzes the internal mechanism of the stochastic rumor propagation model incorporating media coverage with white noise. We investigate the existence of a unique global positive solution to the model and study the dynamic properties of the solutions around the rumor‐free and local equilibrium points of the deterministic model. Furthermore, we establish sufficient conditions for the existence of traversal static distribution in the model. Numerical simulation shows that the role of media coverage is crucial to reduce the rumor propagation scale. The larger the coverage rate is, the smaller the rumor propagation scale is.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6436</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5189-3609</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2020-07, Vol.43 (11), p.6903-6920 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2410879363 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Computer simulation ergodic process Globalization Mathematical models Media coverage Noise propagation Propagation rumor propagation stochastic process White noise |
title | Analyzing the dynamics of a stochastic rumor propagation model incorporating media coverage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20dynamics%20of%20a%20stochastic%20rumor%20propagation%20model%20incorporating%20media%20coverage&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Huo,%20Liang'an&rft.date=2020-07-30&rft.volume=43&rft.issue=11&rft.spage=6903&rft.epage=6920&rft.pages=6903-6920&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6436&rft_dat=%3Cproquest_cross%3E2410879363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410879363&rft_id=info:pmid/&rfr_iscdi=true |