Higher order B‐spline differential quadrature rule to approximate generalized Rosenau‐RLW equation

In this article, B‐spline‐based collocation method is employed to approximate the usual and modified Rosenau‐RLW nonlinear equations. The weighted extended B‐spline (WEB‐spline) is used as the modified form of B‐spline as the usual B‐splines fail to obey the Dirichlet boundary conditions. The WEB me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-07, Vol.43 (11), p.6812-6822
Hauptverfasser: Mustahsan, Muhammad, Kiran, Ayesha, Singh, Jagdev, Nisar, Kottakkaran Sooppy, Kumar, Devendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6822
container_issue 11
container_start_page 6812
container_title Mathematical methods in the applied sciences
container_volume 43
creator Mustahsan, Muhammad
Kiran, Ayesha
Singh, Jagdev
Nisar, Kottakkaran Sooppy
Kumar, Devendra
description In this article, B‐spline‐based collocation method is employed to approximate the usual and modified Rosenau‐RLW nonlinear equations. The weighted extended B‐spline (WEB‐spline) is used as the modified form of B‐spline as the usual B‐splines fail to obey the Dirichlet boundary conditions. The WEB method is more general method that allows to discretize the domain into finite number of elements not necessarily start from the boundary points of the domain. Our method omits the linearization process of the nonlinear partial differential equation (PDE). Different cases are discussed by setting the parameter p=2,3,4, and 6 that appears in Rosenau‐RLW equations. The error estimation is calculated, which gives good agreement of the exact solution.
doi_str_mv 10.1002/mma.6423
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2410879084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410879084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-6695c8519431ab0eb6aeed444107dc53141961b782a089f77ab5acc803483bc3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmMg8QiRuHDpcJq0TY4DAUPahDRN4hilrTsyde2WtIJx4hF4Rp6EjHHlYl8-f7Z_Qi4ZjBhAfLNem1EqYn5EBgyUipjI0mMyAJZBJGImTsmZ9ysAkIzFA1JN7PIVHW1dGert9-eX39S2QVraqkKHTWdNTbe9KZ3peofU9TXSrqVms3Htu12bDukSG3Smth9Y0nnrsTF9EM2nLxTDZGfb5pycVKb2ePHXh2TxcL-4m0TT58enu_E0KmLFeZSmKilkwpTgzOSAeWoQSyEEg6wsEs4EUynLMxkbkKrKMpMnpigkcCF5XvAhuTpow23bHn2nV23vmrBRx8EhMwVSBOr6QBWu9d5hpTcuPOJ2moHeh6hDiHofYkCjA_pma9z9y-nZbPzL_wDYc3VC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410879084</pqid></control><display><type>article</type><title>Higher order B‐spline differential quadrature rule to approximate generalized Rosenau‐RLW equation</title><source>Wiley Online Library All Journals</source><creator>Mustahsan, Muhammad ; Kiran, Ayesha ; Singh, Jagdev ; Nisar, Kottakkaran Sooppy ; Kumar, Devendra</creator><creatorcontrib>Mustahsan, Muhammad ; Kiran, Ayesha ; Singh, Jagdev ; Nisar, Kottakkaran Sooppy ; Kumar, Devendra</creatorcontrib><description>In this article, B‐spline‐based collocation method is employed to approximate the usual and modified Rosenau‐RLW nonlinear equations. The weighted extended B‐spline (WEB‐spline) is used as the modified form of B‐spline as the usual B‐splines fail to obey the Dirichlet boundary conditions. The WEB method is more general method that allows to discretize the domain into finite number of elements not necessarily start from the boundary points of the domain. Our method omits the linearization process of the nonlinear partial differential equation (PDE). Different cases are discussed by setting the parameter p=2,3,4, and 6 that appears in Rosenau‐RLW equations. The error estimation is calculated, which gives good agreement of the exact solution.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6423</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; collocation method ; Collocation methods ; Dirichlet problem ; Domains ; Exact solutions ; Mathematical analysis ; Nonlinear differential equations ; Nonlinear equations ; Partial differential equations ; Quadratures ; Rosenau‐RLW equation ; SSP‐RK54 scheme ; Thomas algorithm ; Webs ; WEB‐spline</subject><ispartof>Mathematical methods in the applied sciences, 2020-07, Vol.43 (11), p.6812-6822</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-6695c8519431ab0eb6aeed444107dc53141961b782a089f77ab5acc803483bc3</citedby><cites>FETCH-LOGICAL-c2933-6695c8519431ab0eb6aeed444107dc53141961b782a089f77ab5acc803483bc3</cites><orcidid>0000-0002-7543-4984 ; 0000-0003-4249-6326 ; 0000-0001-5769-4320 ; 0000-0001-6853-4138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6423$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6423$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mustahsan, Muhammad</creatorcontrib><creatorcontrib>Kiran, Ayesha</creatorcontrib><creatorcontrib>Singh, Jagdev</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><creatorcontrib>Kumar, Devendra</creatorcontrib><title>Higher order B‐spline differential quadrature rule to approximate generalized Rosenau‐RLW equation</title><title>Mathematical methods in the applied sciences</title><description>In this article, B‐spline‐based collocation method is employed to approximate the usual and modified Rosenau‐RLW nonlinear equations. The weighted extended B‐spline (WEB‐spline) is used as the modified form of B‐spline as the usual B‐splines fail to obey the Dirichlet boundary conditions. The WEB method is more general method that allows to discretize the domain into finite number of elements not necessarily start from the boundary points of the domain. Our method omits the linearization process of the nonlinear partial differential equation (PDE). Different cases are discussed by setting the parameter p=2,3,4, and 6 that appears in Rosenau‐RLW equations. The error estimation is calculated, which gives good agreement of the exact solution.</description><subject>Boundary conditions</subject><subject>collocation method</subject><subject>Collocation methods</subject><subject>Dirichlet problem</subject><subject>Domains</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Partial differential equations</subject><subject>Quadratures</subject><subject>Rosenau‐RLW equation</subject><subject>SSP‐RK54 scheme</subject><subject>Thomas algorithm</subject><subject>Webs</subject><subject>WEB‐spline</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMhiMEEmMg8QiRuHDpcJq0TY4DAUPahDRN4hilrTsyde2WtIJx4hF4Rp6EjHHlYl8-f7Z_Qi4ZjBhAfLNem1EqYn5EBgyUipjI0mMyAJZBJGImTsmZ9ysAkIzFA1JN7PIVHW1dGert9-eX39S2QVraqkKHTWdNTbe9KZ3peofU9TXSrqVms3Htu12bDukSG3Smth9Y0nnrsTF9EM2nLxTDZGfb5pycVKb2ePHXh2TxcL-4m0TT58enu_E0KmLFeZSmKilkwpTgzOSAeWoQSyEEg6wsEs4EUynLMxkbkKrKMpMnpigkcCF5XvAhuTpow23bHn2nV23vmrBRx8EhMwVSBOr6QBWu9d5hpTcuPOJ2moHeh6hDiHofYkCjA_pma9z9y-nZbPzL_wDYc3VC</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Mustahsan, Muhammad</creator><creator>Kiran, Ayesha</creator><creator>Singh, Jagdev</creator><creator>Nisar, Kottakkaran Sooppy</creator><creator>Kumar, Devendra</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7543-4984</orcidid><orcidid>https://orcid.org/0000-0003-4249-6326</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0001-6853-4138</orcidid></search><sort><creationdate>20200730</creationdate><title>Higher order B‐spline differential quadrature rule to approximate generalized Rosenau‐RLW equation</title><author>Mustahsan, Muhammad ; Kiran, Ayesha ; Singh, Jagdev ; Nisar, Kottakkaran Sooppy ; Kumar, Devendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-6695c8519431ab0eb6aeed444107dc53141961b782a089f77ab5acc803483bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>collocation method</topic><topic>Collocation methods</topic><topic>Dirichlet problem</topic><topic>Domains</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Partial differential equations</topic><topic>Quadratures</topic><topic>Rosenau‐RLW equation</topic><topic>SSP‐RK54 scheme</topic><topic>Thomas algorithm</topic><topic>Webs</topic><topic>WEB‐spline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mustahsan, Muhammad</creatorcontrib><creatorcontrib>Kiran, Ayesha</creatorcontrib><creatorcontrib>Singh, Jagdev</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><creatorcontrib>Kumar, Devendra</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mustahsan, Muhammad</au><au>Kiran, Ayesha</au><au>Singh, Jagdev</au><au>Nisar, Kottakkaran Sooppy</au><au>Kumar, Devendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher order B‐spline differential quadrature rule to approximate generalized Rosenau‐RLW equation</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-07-30</date><risdate>2020</risdate><volume>43</volume><issue>11</issue><spage>6812</spage><epage>6822</epage><pages>6812-6822</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this article, B‐spline‐based collocation method is employed to approximate the usual and modified Rosenau‐RLW nonlinear equations. The weighted extended B‐spline (WEB‐spline) is used as the modified form of B‐spline as the usual B‐splines fail to obey the Dirichlet boundary conditions. The WEB method is more general method that allows to discretize the domain into finite number of elements not necessarily start from the boundary points of the domain. Our method omits the linearization process of the nonlinear partial differential equation (PDE). Different cases are discussed by setting the parameter p=2,3,4, and 6 that appears in Rosenau‐RLW equations. The error estimation is calculated, which gives good agreement of the exact solution.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6423</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7543-4984</orcidid><orcidid>https://orcid.org/0000-0003-4249-6326</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0001-6853-4138</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-07, Vol.43 (11), p.6812-6822
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2410879084
source Wiley Online Library All Journals
subjects Boundary conditions
collocation method
Collocation methods
Dirichlet problem
Domains
Exact solutions
Mathematical analysis
Nonlinear differential equations
Nonlinear equations
Partial differential equations
Quadratures
Rosenau‐RLW equation
SSP‐RK54 scheme
Thomas algorithm
Webs
WEB‐spline
title Higher order B‐spline differential quadrature rule to approximate generalized Rosenau‐RLW equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20order%20B%E2%80%90spline%20differential%20quadrature%20rule%20to%20approximate%20generalized%20Rosenau%E2%80%90RLW%20equation&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Mustahsan,%20Muhammad&rft.date=2020-07-30&rft.volume=43&rft.issue=11&rft.spage=6812&rft.epage=6822&rft.pages=6812-6822&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6423&rft_dat=%3Cproquest_cross%3E2410879084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410879084&rft_id=info:pmid/&rfr_iscdi=true