A Post-style proof of completeness theorem for symmetric relatedness Logic S

One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Section of Logic 2018, Vol.47 (3), p.201-214
1. Verfasser: Klonowski, Mateusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 3
container_start_page 201
container_title Bulletin of the Section of Logic
container_volume 47
creator Klonowski, Mateusz
description One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue.
doi_str_mv 10.18778/0138-0680.47.3.05
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2410834744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410834744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1855-a05102fa2183c4e29241842cacb5e185aa060422b4670647ef0e7543cc0484883</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGq_gKeA510nyewmPZbiP1hQUMFbSOOstuw2NUkP--3dtiIMDMz85r3hMXYtoBRGa3MLQpkCagMl6lKVUJ2xiUScF0bVH-ds8r-_ZLOUNgBwuBNzM2HNgr-ElIuUh474LobQ8rF86HcdZdpSSjx_U4jU8zZEnoa-pxzXnkfqXKbPI9GEr3HyesUuWtclmv31KXu_v3tbPhbN88PTctEUXpiqKhxUAmTrpDDKI8m5RGFQeudXFY2Ec1ADSrnCWkONmlogXaHyHtCgMWrKbk66478_e0rZbsI-bkdLO0qBUagRR0qeKB9DSpFau4vr3sXBCrDH4OwhGHsIxqK2ykKlfgER0F61</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410834744</pqid></control><display><type>article</type><title>A Post-style proof of completeness theorem for symmetric relatedness Logic S</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Klonowski, Mateusz</creator><creatorcontrib>Klonowski, Mateusz</creatorcontrib><description>One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue.</description><identifier>ISSN: 0138-0680</identifier><identifier>EISSN: 2449-836X</identifier><identifier>DOI: 10.18778/0138-0680.47.3.05</identifier><language>eng</language><publisher>Warsaw: University of Łódź</publisher><subject>Completeness ; Logic ; Theorems</subject><ispartof>Bulletin of the Section of Logic, 2018, Vol.47 (3), p.201-214</ispartof><rights>Copyright University of Łódź 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Klonowski, Mateusz</creatorcontrib><title>A Post-style proof of completeness theorem for symmetric relatedness Logic S</title><title>Bulletin of the Section of Logic</title><description>One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue.</description><subject>Completeness</subject><subject>Logic</subject><subject>Theorems</subject><issn>0138-0680</issn><issn>2449-836X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE9LAzEQxYMoWGq_gKeA510nyewmPZbiP1hQUMFbSOOstuw2NUkP--3dtiIMDMz85r3hMXYtoBRGa3MLQpkCagMl6lKVUJ2xiUScF0bVH-ds8r-_ZLOUNgBwuBNzM2HNgr-ElIuUh474LobQ8rF86HcdZdpSSjx_U4jU8zZEnoa-pxzXnkfqXKbPI9GEr3HyesUuWtclmv31KXu_v3tbPhbN88PTctEUXpiqKhxUAmTrpDDKI8m5RGFQeudXFY2Ec1ADSrnCWkONmlogXaHyHtCgMWrKbk66478_e0rZbsI-bkdLO0qBUagRR0qeKB9DSpFau4vr3sXBCrDH4OwhGHsIxqK2ykKlfgER0F61</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Klonowski, Mateusz</creator><general>University of Łódź</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2018</creationdate><title>A Post-style proof of completeness theorem for symmetric relatedness Logic S</title><author>Klonowski, Mateusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1855-a05102fa2183c4e29241842cacb5e185aa060422b4670647ef0e7543cc0484883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Completeness</topic><topic>Logic</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klonowski, Mateusz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Bulletin of the Section of Logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klonowski, Mateusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Post-style proof of completeness theorem for symmetric relatedness Logic S</atitle><jtitle>Bulletin of the Section of Logic</jtitle><date>2018</date><risdate>2018</risdate><volume>47</volume><issue>3</issue><spage>201</spage><epage>214</epage><pages>201-214</pages><issn>0138-0680</issn><eissn>2449-836X</eissn><abstract>One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue.</abstract><cop>Warsaw</cop><pub>University of Łódź</pub><doi>10.18778/0138-0680.47.3.05</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0138-0680
ispartof Bulletin of the Section of Logic, 2018, Vol.47 (3), p.201-214
issn 0138-0680
2449-836X
language eng
recordid cdi_proquest_journals_2410834744
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Completeness
Logic
Theorems
title A Post-style proof of completeness theorem for symmetric relatedness Logic S
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Post-style%20proof%20of%20completeness%20theorem%20for%20symmetric%20relatedness%20Logic%20S&rft.jtitle=Bulletin%20of%20the%20Section%20of%20Logic&rft.au=Klonowski,%20Mateusz&rft.date=2018&rft.volume=47&rft.issue=3&rft.spage=201&rft.epage=214&rft.pages=201-214&rft.issn=0138-0680&rft.eissn=2449-836X&rft_id=info:doi/10.18778/0138-0680.47.3.05&rft_dat=%3Cproquest_cross%3E2410834744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410834744&rft_id=info:pmid/&rfr_iscdi=true