Study of Entropy Properties of a Linearized Version of Godunov’s Method
The ideas of formulating a weak solution for a hyperbolic system of one-dimensional gas dynamics equations are presented. An important aspect is the examination of the scheme for the fulfillment of the nondecreasing entropy law, which must hold for weak solutions and is obligatory from a physics poi...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2020-04, Vol.60 (4), p.628-640 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 640 |
---|---|
container_issue | 4 |
container_start_page | 628 |
container_title | Computational mathematics and mathematical physics |
container_volume | 60 |
creator | Godunov, S. K. Denisenko, V. V. Klyuchinskii, D. V. Fortova, S. V. Shepelev, V. V. |
description | The ideas of formulating a weak solution for a hyperbolic system of one-dimensional gas dynamics equations are presented. An important aspect is the examination of the scheme for the fulfillment of the nondecreasing entropy law, which must hold for weak solutions and is obligatory from a physics point of view. The concept of a weak solution is defined in a finite-difference formulation with the help of the simplest linearized version of the classical Godunov scheme. It is experimentally shown that this version guarantees an entropy nondecrease. As a result, the growth of entropy on shock waves can be simulated without using any correction terms or additional conditions. |
doi_str_mv | 10.1134/S0965542520040089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2410772502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410772502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-efbb29ae539e8379bf64ea5fa8b0431b46353d7e6696a851b759605a5db8acb13</originalsourceid><addsrcrecordid>eNp1UM1Kw0AQXkTBWn0AbwHP0dmf2WSPUqoWKgpVr2G3mWiKZutuItSTr-Hr-SQmVPAgXmbg-4WPsWMOp5xLdbYAoxGVQAGgAHKzw0YcEVOttdhlo4FOB36fHcS4AuDa5HLEZou2KzeJr5Jp0wa_3iS3_aXQ1hQH1CbzuiEb6ncqkwcKsfbNgF_6smv829fHZ0yuqX3y5SHbq-xzpKOfP2b3F9O7yVU6v7mcTc7n6VJy3aZUOSeMJZSGcpkZV2lFFiubO1CSO6UlyjIjrY22OXKXodGAFkuX26XjcsxOtrnr4F87im2x8l1o-spCKA5ZJhBEr-Jb1TL4GANVxTrULzZsCg7FsFjxZ7HeI7ae2GubRwq_yf-bvgHYm21I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410772502</pqid></control><display><type>article</type><title>Study of Entropy Properties of a Linearized Version of Godunov’s Method</title><source>SpringerNature Journals</source><creator>Godunov, S. K. ; Denisenko, V. V. ; Klyuchinskii, D. V. ; Fortova, S. V. ; Shepelev, V. V.</creator><creatorcontrib>Godunov, S. K. ; Denisenko, V. V. ; Klyuchinskii, D. V. ; Fortova, S. V. ; Shepelev, V. V.</creatorcontrib><description>The ideas of formulating a weak solution for a hyperbolic system of one-dimensional gas dynamics equations are presented. An important aspect is the examination of the scheme for the fulfillment of the nondecreasing entropy law, which must hold for weak solutions and is obligatory from a physics point of view. The concept of a weak solution is defined in a finite-difference formulation with the help of the simplest linearized version of the classical Godunov scheme. It is experimentally shown that this version guarantees an entropy nondecrease. As a result, the growth of entropy on shock waves can be simulated without using any correction terms or additional conditions.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542520040089</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Entropy ; Finite difference method ; Gas dynamics ; Hyperbolic systems ; Linearization ; Mathematics ; Mathematics and Statistics ; Shock waves</subject><ispartof>Computational mathematics and mathematical physics, 2020-04, Vol.60 (4), p.628-640</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-efbb29ae539e8379bf64ea5fa8b0431b46353d7e6696a851b759605a5db8acb13</citedby><cites>FETCH-LOGICAL-c316t-efbb29ae539e8379bf64ea5fa8b0431b46353d7e6696a851b759605a5db8acb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542520040089$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542520040089$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Godunov, S. K.</creatorcontrib><creatorcontrib>Denisenko, V. V.</creatorcontrib><creatorcontrib>Klyuchinskii, D. V.</creatorcontrib><creatorcontrib>Fortova, S. V.</creatorcontrib><creatorcontrib>Shepelev, V. V.</creatorcontrib><title>Study of Entropy Properties of a Linearized Version of Godunov’s Method</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The ideas of formulating a weak solution for a hyperbolic system of one-dimensional gas dynamics equations are presented. An important aspect is the examination of the scheme for the fulfillment of the nondecreasing entropy law, which must hold for weak solutions and is obligatory from a physics point of view. The concept of a weak solution is defined in a finite-difference formulation with the help of the simplest linearized version of the classical Godunov scheme. It is experimentally shown that this version guarantees an entropy nondecrease. As a result, the growth of entropy on shock waves can be simulated without using any correction terms or additional conditions.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Entropy</subject><subject>Finite difference method</subject><subject>Gas dynamics</subject><subject>Hyperbolic systems</subject><subject>Linearization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Shock waves</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UM1Kw0AQXkTBWn0AbwHP0dmf2WSPUqoWKgpVr2G3mWiKZutuItSTr-Hr-SQmVPAgXmbg-4WPsWMOp5xLdbYAoxGVQAGgAHKzw0YcEVOttdhlo4FOB36fHcS4AuDa5HLEZou2KzeJr5Jp0wa_3iS3_aXQ1hQH1CbzuiEb6ncqkwcKsfbNgF_6smv829fHZ0yuqX3y5SHbq-xzpKOfP2b3F9O7yVU6v7mcTc7n6VJy3aZUOSeMJZSGcpkZV2lFFiubO1CSO6UlyjIjrY22OXKXodGAFkuX26XjcsxOtrnr4F87im2x8l1o-spCKA5ZJhBEr-Jb1TL4GANVxTrULzZsCg7FsFjxZ7HeI7ae2GubRwq_yf-bvgHYm21I</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Godunov, S. K.</creator><creator>Denisenko, V. V.</creator><creator>Klyuchinskii, D. V.</creator><creator>Fortova, S. V.</creator><creator>Shepelev, V. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200401</creationdate><title>Study of Entropy Properties of a Linearized Version of Godunov’s Method</title><author>Godunov, S. K. ; Denisenko, V. V. ; Klyuchinskii, D. V. ; Fortova, S. V. ; Shepelev, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-efbb29ae539e8379bf64ea5fa8b0431b46353d7e6696a851b759605a5db8acb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Entropy</topic><topic>Finite difference method</topic><topic>Gas dynamics</topic><topic>Hyperbolic systems</topic><topic>Linearization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Shock waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godunov, S. K.</creatorcontrib><creatorcontrib>Denisenko, V. V.</creatorcontrib><creatorcontrib>Klyuchinskii, D. V.</creatorcontrib><creatorcontrib>Fortova, S. V.</creatorcontrib><creatorcontrib>Shepelev, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godunov, S. K.</au><au>Denisenko, V. V.</au><au>Klyuchinskii, D. V.</au><au>Fortova, S. V.</au><au>Shepelev, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Entropy Properties of a Linearized Version of Godunov’s Method</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>60</volume><issue>4</issue><spage>628</spage><epage>640</epage><pages>628-640</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The ideas of formulating a weak solution for a hyperbolic system of one-dimensional gas dynamics equations are presented. An important aspect is the examination of the scheme for the fulfillment of the nondecreasing entropy law, which must hold for weak solutions and is obligatory from a physics point of view. The concept of a weak solution is defined in a finite-difference formulation with the help of the simplest linearized version of the classical Godunov scheme. It is experimentally shown that this version guarantees an entropy nondecrease. As a result, the growth of entropy on shock waves can be simulated without using any correction terms or additional conditions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542520040089</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2020-04, Vol.60 (4), p.628-640 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2410772502 |
source | SpringerNature Journals |
subjects | Computational Mathematics and Numerical Analysis Entropy Finite difference method Gas dynamics Hyperbolic systems Linearization Mathematics Mathematics and Statistics Shock waves |
title | Study of Entropy Properties of a Linearized Version of Godunov’s Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Entropy%20Properties%20of%20a%20Linearized%20Version%20of%20Godunov%E2%80%99s%20Method&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Godunov,%20S.%20K.&rft.date=2020-04-01&rft.volume=60&rft.issue=4&rft.spage=628&rft.epage=640&rft.pages=628-640&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542520040089&rft_dat=%3Cproquest_cross%3E2410772502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410772502&rft_id=info:pmid/&rfr_iscdi=true |