Study of Entropy Properties of a Linearized Version of Godunov’s Method

The ideas of formulating a weak solution for a hyperbolic system of one-dimensional gas dynamics equations are presented. An important aspect is the examination of the scheme for the fulfillment of the nondecreasing entropy law, which must hold for weak solutions and is obligatory from a physics poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2020-04, Vol.60 (4), p.628-640
Hauptverfasser: Godunov, S. K., Denisenko, V. V., Klyuchinskii, D. V., Fortova, S. V., Shepelev, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 640
container_issue 4
container_start_page 628
container_title Computational mathematics and mathematical physics
container_volume 60
creator Godunov, S. K.
Denisenko, V. V.
Klyuchinskii, D. V.
Fortova, S. V.
Shepelev, V. V.
description The ideas of formulating a weak solution for a hyperbolic system of one-dimensional gas dynamics equations are presented. An important aspect is the examination of the scheme for the fulfillment of the nondecreasing entropy law, which must hold for weak solutions and is obligatory from a physics point of view. The concept of a weak solution is defined in a finite-difference formulation with the help of the simplest linearized version of the classical Godunov scheme. It is experimentally shown that this version guarantees an entropy nondecrease. As a result, the growth of entropy on shock waves can be simulated without using any correction terms or additional conditions.
doi_str_mv 10.1134/S0965542520040089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2410772502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410772502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-efbb29ae539e8379bf64ea5fa8b0431b46353d7e6696a851b759605a5db8acb13</originalsourceid><addsrcrecordid>eNp1UM1Kw0AQXkTBWn0AbwHP0dmf2WSPUqoWKgpVr2G3mWiKZutuItSTr-Hr-SQmVPAgXmbg-4WPsWMOp5xLdbYAoxGVQAGgAHKzw0YcEVOttdhlo4FOB36fHcS4AuDa5HLEZou2KzeJr5Jp0wa_3iS3_aXQ1hQH1CbzuiEb6ncqkwcKsfbNgF_6smv829fHZ0yuqX3y5SHbq-xzpKOfP2b3F9O7yVU6v7mcTc7n6VJy3aZUOSeMJZSGcpkZV2lFFiubO1CSO6UlyjIjrY22OXKXodGAFkuX26XjcsxOtrnr4F87im2x8l1o-spCKA5ZJhBEr-Jb1TL4GANVxTrULzZsCg7FsFjxZ7HeI7ae2GubRwq_yf-bvgHYm21I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410772502</pqid></control><display><type>article</type><title>Study of Entropy Properties of a Linearized Version of Godunov’s Method</title><source>SpringerNature Journals</source><creator>Godunov, S. K. ; Denisenko, V. V. ; Klyuchinskii, D. V. ; Fortova, S. V. ; Shepelev, V. V.</creator><creatorcontrib>Godunov, S. K. ; Denisenko, V. V. ; Klyuchinskii, D. V. ; Fortova, S. V. ; Shepelev, V. V.</creatorcontrib><description>The ideas of formulating a weak solution for a hyperbolic system of one-dimensional gas dynamics equations are presented. An important aspect is the examination of the scheme for the fulfillment of the nondecreasing entropy law, which must hold for weak solutions and is obligatory from a physics point of view. The concept of a weak solution is defined in a finite-difference formulation with the help of the simplest linearized version of the classical Godunov scheme. It is experimentally shown that this version guarantees an entropy nondecrease. As a result, the growth of entropy on shock waves can be simulated without using any correction terms or additional conditions.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542520040089</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Entropy ; Finite difference method ; Gas dynamics ; Hyperbolic systems ; Linearization ; Mathematics ; Mathematics and Statistics ; Shock waves</subject><ispartof>Computational mathematics and mathematical physics, 2020-04, Vol.60 (4), p.628-640</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-efbb29ae539e8379bf64ea5fa8b0431b46353d7e6696a851b759605a5db8acb13</citedby><cites>FETCH-LOGICAL-c316t-efbb29ae539e8379bf64ea5fa8b0431b46353d7e6696a851b759605a5db8acb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542520040089$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542520040089$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Godunov, S. K.</creatorcontrib><creatorcontrib>Denisenko, V. V.</creatorcontrib><creatorcontrib>Klyuchinskii, D. V.</creatorcontrib><creatorcontrib>Fortova, S. V.</creatorcontrib><creatorcontrib>Shepelev, V. V.</creatorcontrib><title>Study of Entropy Properties of a Linearized Version of Godunov’s Method</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The ideas of formulating a weak solution for a hyperbolic system of one-dimensional gas dynamics equations are presented. An important aspect is the examination of the scheme for the fulfillment of the nondecreasing entropy law, which must hold for weak solutions and is obligatory from a physics point of view. The concept of a weak solution is defined in a finite-difference formulation with the help of the simplest linearized version of the classical Godunov scheme. It is experimentally shown that this version guarantees an entropy nondecrease. As a result, the growth of entropy on shock waves can be simulated without using any correction terms or additional conditions.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Entropy</subject><subject>Finite difference method</subject><subject>Gas dynamics</subject><subject>Hyperbolic systems</subject><subject>Linearization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Shock waves</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UM1Kw0AQXkTBWn0AbwHP0dmf2WSPUqoWKgpVr2G3mWiKZutuItSTr-Hr-SQmVPAgXmbg-4WPsWMOp5xLdbYAoxGVQAGgAHKzw0YcEVOttdhlo4FOB36fHcS4AuDa5HLEZou2KzeJr5Jp0wa_3iS3_aXQ1hQH1CbzuiEb6ncqkwcKsfbNgF_6smv829fHZ0yuqX3y5SHbq-xzpKOfP2b3F9O7yVU6v7mcTc7n6VJy3aZUOSeMJZSGcpkZV2lFFiubO1CSO6UlyjIjrY22OXKXodGAFkuX26XjcsxOtrnr4F87im2x8l1o-spCKA5ZJhBEr-Jb1TL4GANVxTrULzZsCg7FsFjxZ7HeI7ae2GubRwq_yf-bvgHYm21I</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Godunov, S. K.</creator><creator>Denisenko, V. V.</creator><creator>Klyuchinskii, D. V.</creator><creator>Fortova, S. V.</creator><creator>Shepelev, V. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200401</creationdate><title>Study of Entropy Properties of a Linearized Version of Godunov’s Method</title><author>Godunov, S. K. ; Denisenko, V. V. ; Klyuchinskii, D. V. ; Fortova, S. V. ; Shepelev, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-efbb29ae539e8379bf64ea5fa8b0431b46353d7e6696a851b759605a5db8acb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Entropy</topic><topic>Finite difference method</topic><topic>Gas dynamics</topic><topic>Hyperbolic systems</topic><topic>Linearization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Shock waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godunov, S. K.</creatorcontrib><creatorcontrib>Denisenko, V. V.</creatorcontrib><creatorcontrib>Klyuchinskii, D. V.</creatorcontrib><creatorcontrib>Fortova, S. V.</creatorcontrib><creatorcontrib>Shepelev, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godunov, S. K.</au><au>Denisenko, V. V.</au><au>Klyuchinskii, D. V.</au><au>Fortova, S. V.</au><au>Shepelev, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Entropy Properties of a Linearized Version of Godunov’s Method</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>60</volume><issue>4</issue><spage>628</spage><epage>640</epage><pages>628-640</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The ideas of formulating a weak solution for a hyperbolic system of one-dimensional gas dynamics equations are presented. An important aspect is the examination of the scheme for the fulfillment of the nondecreasing entropy law, which must hold for weak solutions and is obligatory from a physics point of view. The concept of a weak solution is defined in a finite-difference formulation with the help of the simplest linearized version of the classical Godunov scheme. It is experimentally shown that this version guarantees an entropy nondecrease. As a result, the growth of entropy on shock waves can be simulated without using any correction terms or additional conditions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542520040089</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2020-04, Vol.60 (4), p.628-640
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2410772502
source SpringerNature Journals
subjects Computational Mathematics and Numerical Analysis
Entropy
Finite difference method
Gas dynamics
Hyperbolic systems
Linearization
Mathematics
Mathematics and Statistics
Shock waves
title Study of Entropy Properties of a Linearized Version of Godunov’s Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Entropy%20Properties%20of%20a%20Linearized%20Version%20of%20Godunov%E2%80%99s%20Method&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Godunov,%20S.%20K.&rft.date=2020-04-01&rft.volume=60&rft.issue=4&rft.spage=628&rft.epage=640&rft.pages=628-640&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542520040089&rft_dat=%3Cproquest_cross%3E2410772502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410772502&rft_id=info:pmid/&rfr_iscdi=true