Rational Design of Hydroxyl‐Rich Ti3C2Tx MXene Quantum Dots for High‐Performance Electrochemical N2 Reduction
To enable an efficient and cost‐effective electrocatalytic N2 reduction reaction (NRR) the development of an electrocatalyst with a high NH3 yield and good selectivity is required. In this work, Ti3C2Tx MXene‐derived quantum dots (Ti3C2Tx QDs) with abundant active sites enable the development of eff...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2020-06, Vol.10 (22), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 10 |
creator | Jin, Zhaoyong Liu, Chuangwei Liu, Zaichun Han, Jingrui Fang, Yanfeng Han, Yaqian Niu, Yusheng Wu, Yuping Sun, Chenghua Xu, Yuanhong |
description | To enable an efficient and cost‐effective electrocatalytic N2 reduction reaction (NRR) the development of an electrocatalyst with a high NH3 yield and good selectivity is required. In this work, Ti3C2Tx MXene‐derived quantum dots (Ti3C2Tx QDs) with abundant active sites enable the development of efficient NRR electrocatalysts. Given surface functional groups play a key role on the electrocatalytic performance, density functional theory calculations are first conducted, clarifying that hydroxyl groups on Ti3C2Tx offer excellent NRR activity. Accordingly, hydroxyl‐rich Ti3C2Tx QDs (Ti3C2OH QDs) are synthesized as NRR catalysts by alkalization and intercalation. This material offers an NH3 yield and Faradaic efficiency of 62.94 µg h−1 mg−1cat. and 13.30% at −0.50 V, respectively, remarkably higher than reported MXene catalysts. This work demonstrates that MXene catalysts can be mediated through the optimization of both QDs sizes and functional groups for efficient ammonia production at room temperature.
Hydroxyl‐rich MXene Ti3C2Tx quantum dots (Ti3C2OH QDs) are rationally designed for electrochemical nitrogen fixation. This material possesses increased active sites (Ti‐edge) and optimized surface functional groups (OH) based on the computational effort. The electrocatalyst exhibits high performance and excellent selectivity synchronously with the NH3 yield and Faradaic efficiency of 62.94 µg h−1 mg−1cat. And 13.30% at −0.50 V, respectively. |
doi_str_mv | 10.1002/aenm.202000797 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2410603742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410603742</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2517-24a96350e008531e33dc4cdfcd5aa3eaf0d2dcb404bbb8dc8d7ae34c20a73fd93</originalsourceid><addsrcrecordid>eNo9kMtOAjEUhhujiQTZum7ievD0MrclARQTQCWYuGs6bQdK5gKdmcjsfASf0SdxCIbVOX_y5T85H0L3BIYEgD5KU-RDChQAwji8Qj0SEO4FEYfry87oLRpU1a5jgMcEGOuhw0rWtixkhiemspsClymetdqVxzb7_f5ZWbXFa8vGdH3Ei09TGPzeyKJucjwp6wqnpcMzu9l26JtxXcploQyeZkbVrlRbk1vVdS8pXhndqNOpO3STyqwyg__ZRx9P0_V45s1fn1_Go7m3oT4JPcplHDAfDEDkM2IY04ornSrtS8mMTEFTrRIOPEmSSKtIh9IwrijIkKU6Zn30cO7du_LQmKoWu7Jx3aeVoJxAACzktKPiM_VlM9OKvbO5dK0gIE5axUmruGgVo-lycUnsD9k_cJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410603742</pqid></control><display><type>article</type><title>Rational Design of Hydroxyl‐Rich Ti3C2Tx MXene Quantum Dots for High‐Performance Electrochemical N2 Reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jin, Zhaoyong ; Liu, Chuangwei ; Liu, Zaichun ; Han, Jingrui ; Fang, Yanfeng ; Han, Yaqian ; Niu, Yusheng ; Wu, Yuping ; Sun, Chenghua ; Xu, Yuanhong</creator><creatorcontrib>Jin, Zhaoyong ; Liu, Chuangwei ; Liu, Zaichun ; Han, Jingrui ; Fang, Yanfeng ; Han, Yaqian ; Niu, Yusheng ; Wu, Yuping ; Sun, Chenghua ; Xu, Yuanhong</creatorcontrib><description>To enable an efficient and cost‐effective electrocatalytic N2 reduction reaction (NRR) the development of an electrocatalyst with a high NH3 yield and good selectivity is required. In this work, Ti3C2Tx MXene‐derived quantum dots (Ti3C2Tx QDs) with abundant active sites enable the development of efficient NRR electrocatalysts. Given surface functional groups play a key role on the electrocatalytic performance, density functional theory calculations are first conducted, clarifying that hydroxyl groups on Ti3C2Tx offer excellent NRR activity. Accordingly, hydroxyl‐rich Ti3C2Tx QDs (Ti3C2OH QDs) are synthesized as NRR catalysts by alkalization and intercalation. This material offers an NH3 yield and Faradaic efficiency of 62.94 µg h−1 mg−1cat. and 13.30% at −0.50 V, respectively, remarkably higher than reported MXene catalysts. This work demonstrates that MXene catalysts can be mediated through the optimization of both QDs sizes and functional groups for efficient ammonia production at room temperature.
Hydroxyl‐rich MXene Ti3C2Tx quantum dots (Ti3C2OH QDs) are rationally designed for electrochemical nitrogen fixation. This material possesses increased active sites (Ti‐edge) and optimized surface functional groups (OH) based on the computational effort. The electrocatalyst exhibits high performance and excellent selectivity synchronously with the NH3 yield and Faradaic efficiency of 62.94 µg h−1 mg−1cat. And 13.30% at −0.50 V, respectively.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202000797</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alkalizing ; Ammonia ; Catalysts ; Chemical reduction ; Chemical synthesis ; Density functional theory ; electrocatalysis ; Electrocatalysts ; Functional groups ; Hydroxyl groups ; MXenes ; nitrogen reduction reaction ; Optimization ; Quantum dots ; Room temperature ; Selectivity ; surface functional groups ; Ti3C2TX MXene</subject><ispartof>Advanced energy materials, 2020-06, Vol.10 (22), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1549-9820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202000797$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202000797$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jin, Zhaoyong</creatorcontrib><creatorcontrib>Liu, Chuangwei</creatorcontrib><creatorcontrib>Liu, Zaichun</creatorcontrib><creatorcontrib>Han, Jingrui</creatorcontrib><creatorcontrib>Fang, Yanfeng</creatorcontrib><creatorcontrib>Han, Yaqian</creatorcontrib><creatorcontrib>Niu, Yusheng</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Sun, Chenghua</creatorcontrib><creatorcontrib>Xu, Yuanhong</creatorcontrib><title>Rational Design of Hydroxyl‐Rich Ti3C2Tx MXene Quantum Dots for High‐Performance Electrochemical N2 Reduction</title><title>Advanced energy materials</title><description>To enable an efficient and cost‐effective electrocatalytic N2 reduction reaction (NRR) the development of an electrocatalyst with a high NH3 yield and good selectivity is required. In this work, Ti3C2Tx MXene‐derived quantum dots (Ti3C2Tx QDs) with abundant active sites enable the development of efficient NRR electrocatalysts. Given surface functional groups play a key role on the electrocatalytic performance, density functional theory calculations are first conducted, clarifying that hydroxyl groups on Ti3C2Tx offer excellent NRR activity. Accordingly, hydroxyl‐rich Ti3C2Tx QDs (Ti3C2OH QDs) are synthesized as NRR catalysts by alkalization and intercalation. This material offers an NH3 yield and Faradaic efficiency of 62.94 µg h−1 mg−1cat. and 13.30% at −0.50 V, respectively, remarkably higher than reported MXene catalysts. This work demonstrates that MXene catalysts can be mediated through the optimization of both QDs sizes and functional groups for efficient ammonia production at room temperature.
Hydroxyl‐rich MXene Ti3C2Tx quantum dots (Ti3C2OH QDs) are rationally designed for electrochemical nitrogen fixation. This material possesses increased active sites (Ti‐edge) and optimized surface functional groups (OH) based on the computational effort. The electrocatalyst exhibits high performance and excellent selectivity synchronously with the NH3 yield and Faradaic efficiency of 62.94 µg h−1 mg−1cat. And 13.30% at −0.50 V, respectively.</description><subject>Alkalizing</subject><subject>Ammonia</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Density functional theory</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Functional groups</subject><subject>Hydroxyl groups</subject><subject>MXenes</subject><subject>nitrogen reduction reaction</subject><subject>Optimization</subject><subject>Quantum dots</subject><subject>Room temperature</subject><subject>Selectivity</subject><subject>surface functional groups</subject><subject>Ti3C2TX MXene</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOAjEUhhujiQTZum7ievD0MrclARQTQCWYuGs6bQdK5gKdmcjsfASf0SdxCIbVOX_y5T85H0L3BIYEgD5KU-RDChQAwji8Qj0SEO4FEYfry87oLRpU1a5jgMcEGOuhw0rWtixkhiemspsClymetdqVxzb7_f5ZWbXFa8vGdH3Ei09TGPzeyKJucjwp6wqnpcMzu9l26JtxXcploQyeZkbVrlRbk1vVdS8pXhndqNOpO3STyqwyg__ZRx9P0_V45s1fn1_Go7m3oT4JPcplHDAfDEDkM2IY04ornSrtS8mMTEFTrRIOPEmSSKtIh9IwrijIkKU6Zn30cO7du_LQmKoWu7Jx3aeVoJxAACzktKPiM_VlM9OKvbO5dK0gIE5axUmruGgVo-lycUnsD9k_cJ4</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Jin, Zhaoyong</creator><creator>Liu, Chuangwei</creator><creator>Liu, Zaichun</creator><creator>Han, Jingrui</creator><creator>Fang, Yanfeng</creator><creator>Han, Yaqian</creator><creator>Niu, Yusheng</creator><creator>Wu, Yuping</creator><creator>Sun, Chenghua</creator><creator>Xu, Yuanhong</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1549-9820</orcidid></search><sort><creationdate>20200601</creationdate><title>Rational Design of Hydroxyl‐Rich Ti3C2Tx MXene Quantum Dots for High‐Performance Electrochemical N2 Reduction</title><author>Jin, Zhaoyong ; Liu, Chuangwei ; Liu, Zaichun ; Han, Jingrui ; Fang, Yanfeng ; Han, Yaqian ; Niu, Yusheng ; Wu, Yuping ; Sun, Chenghua ; Xu, Yuanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2517-24a96350e008531e33dc4cdfcd5aa3eaf0d2dcb404bbb8dc8d7ae34c20a73fd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkalizing</topic><topic>Ammonia</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Density functional theory</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Functional groups</topic><topic>Hydroxyl groups</topic><topic>MXenes</topic><topic>nitrogen reduction reaction</topic><topic>Optimization</topic><topic>Quantum dots</topic><topic>Room temperature</topic><topic>Selectivity</topic><topic>surface functional groups</topic><topic>Ti3C2TX MXene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Zhaoyong</creatorcontrib><creatorcontrib>Liu, Chuangwei</creatorcontrib><creatorcontrib>Liu, Zaichun</creatorcontrib><creatorcontrib>Han, Jingrui</creatorcontrib><creatorcontrib>Fang, Yanfeng</creatorcontrib><creatorcontrib>Han, Yaqian</creatorcontrib><creatorcontrib>Niu, Yusheng</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Sun, Chenghua</creatorcontrib><creatorcontrib>Xu, Yuanhong</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Zhaoyong</au><au>Liu, Chuangwei</au><au>Liu, Zaichun</au><au>Han, Jingrui</au><au>Fang, Yanfeng</au><au>Han, Yaqian</au><au>Niu, Yusheng</au><au>Wu, Yuping</au><au>Sun, Chenghua</au><au>Xu, Yuanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of Hydroxyl‐Rich Ti3C2Tx MXene Quantum Dots for High‐Performance Electrochemical N2 Reduction</atitle><jtitle>Advanced energy materials</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>10</volume><issue>22</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>To enable an efficient and cost‐effective electrocatalytic N2 reduction reaction (NRR) the development of an electrocatalyst with a high NH3 yield and good selectivity is required. In this work, Ti3C2Tx MXene‐derived quantum dots (Ti3C2Tx QDs) with abundant active sites enable the development of efficient NRR electrocatalysts. Given surface functional groups play a key role on the electrocatalytic performance, density functional theory calculations are first conducted, clarifying that hydroxyl groups on Ti3C2Tx offer excellent NRR activity. Accordingly, hydroxyl‐rich Ti3C2Tx QDs (Ti3C2OH QDs) are synthesized as NRR catalysts by alkalization and intercalation. This material offers an NH3 yield and Faradaic efficiency of 62.94 µg h−1 mg−1cat. and 13.30% at −0.50 V, respectively, remarkably higher than reported MXene catalysts. This work demonstrates that MXene catalysts can be mediated through the optimization of both QDs sizes and functional groups for efficient ammonia production at room temperature.
Hydroxyl‐rich MXene Ti3C2Tx quantum dots (Ti3C2OH QDs) are rationally designed for electrochemical nitrogen fixation. This material possesses increased active sites (Ti‐edge) and optimized surface functional groups (OH) based on the computational effort. The electrocatalyst exhibits high performance and excellent selectivity synchronously with the NH3 yield and Faradaic efficiency of 62.94 µg h−1 mg−1cat. And 13.30% at −0.50 V, respectively.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202000797</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1549-9820</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2020-06, Vol.10 (22), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2410603742 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alkalizing Ammonia Catalysts Chemical reduction Chemical synthesis Density functional theory electrocatalysis Electrocatalysts Functional groups Hydroxyl groups MXenes nitrogen reduction reaction Optimization Quantum dots Room temperature Selectivity surface functional groups Ti3C2TX MXene |
title | Rational Design of Hydroxyl‐Rich Ti3C2Tx MXene Quantum Dots for High‐Performance Electrochemical N2 Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20Hydroxyl%E2%80%90Rich%20Ti3C2Tx%20MXene%20Quantum%20Dots%20for%20High%E2%80%90Performance%20Electrochemical%20N2%20Reduction&rft.jtitle=Advanced%20energy%20materials&rft.au=Jin,%20Zhaoyong&rft.date=2020-06-01&rft.volume=10&rft.issue=22&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202000797&rft_dat=%3Cproquest_wiley%3E2410603742%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410603742&rft_id=info:pmid/&rfr_iscdi=true |