Optimization on Adhesive Stamp Mass-Transfer of Micro-LEDs With Support Vector Machine Model

In this work, the process of adhesive stamp mass-transfer of micro light-emitting diode (micro-LED) is optimized by a Support Vector Machine (SVM) model. The pick-up experiments have been performed repeatedly for hundreds of times from which the separation speed and the force between the stamp and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of the Electron Devices Society 2020, Vol.8, p.554-558
Hauptverfasser: Lu, Hao, Guo, Weijie, Su, Changwen, Li, Xilong, Lu, Yijun, Chen, Zhong, Zhu, Lihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue
container_start_page 554
container_title IEEE journal of the Electron Devices Society
container_volume 8
creator Lu, Hao
Guo, Weijie
Su, Changwen
Li, Xilong
Lu, Yijun
Chen, Zhong
Zhu, Lihong
description In this work, the process of adhesive stamp mass-transfer of micro light-emitting diode (micro-LED) is optimized by a Support Vector Machine (SVM) model. The pick-up experiments have been performed repeatedly for hundreds of times from which the separation speed and the force between the stamp and the donor substrate are extracted as signal features. The SVM model with a Gaussian kernel function is designed to classify pick-up results into success and failure. In addition, the optimal cost parameter C as well as the Gaussian kernel function parameter gamma (\gamma) has been optimized, leading to the improvement of the classification by Particle Swarm Optimization (PSO) algorithm. Finally, an 85% classification accuracy is achieved based on the SVM model, implying that more sophisticated definition of signal features is demanded in future work.
doi_str_mv 10.1109/JEDS.2020.2995710
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2410518418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9096346</ieee_id><doaj_id>oai_doaj_org_article_6bf2117a3f6942939ac0c7c79e265575</doaj_id><sourcerecordid>2410518418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-180c393d28ccd2d34cd3c76534f98c9ede769ca3d342cd1c44c07df18480fad3</originalsourceid><addsrcrecordid>eNpNUV1rWzEMvYwNWrr-gNIXw55v6q9rXz-WJOs6EvqQsL4UjCvbi0MS39lOofv1dZYQJgQS0tGR0GmaG4JHhGB193M6WYwopnhEleokwZ-aS0pE3wrJ-Of_8ovmOuc1rtYToYS4bF6ehhK24a8pIe5Q9Xu7cjm8ObQoZjugucm5XSazy94lFD2aB0ixnU0nGT2HskKL_TDEVNAvByWmiodV2Dk0j9ZtvjZfvNlkd32KV83y-3Q5_tHOnh4ex_ezFjimpSU9BqaYpT2ApZZxsAyk6Bj3qgflrJNCgWG1Q8ES4BywtJ70vMfeWHbVPB5pbTRrPaSwNeldRxP0v0JMv7VJJcDGafHqKSHSMC8Up4opAxgkSOWo6DrZVa5vR64hxT97l4tex33a1es15QR3dSnpK4ocUfUXOSfnz1sJ1gdJ9EESfZBEnySpM7fHmeCcO-MVVoJxwT4ARZ2GBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410518418</pqid></control><display><type>article</type><title>Optimization on Adhesive Stamp Mass-Transfer of Micro-LEDs With Support Vector Machine Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lu, Hao ; Guo, Weijie ; Su, Changwen ; Li, Xilong ; Lu, Yijun ; Chen, Zhong ; Zhu, Lihong</creator><creatorcontrib>Lu, Hao ; Guo, Weijie ; Su, Changwen ; Li, Xilong ; Lu, Yijun ; Chen, Zhong ; Zhu, Lihong</creatorcontrib><description><![CDATA[In this work, the process of adhesive stamp mass-transfer of micro light-emitting diode (micro-LED) is optimized by a Support Vector Machine (SVM) model. The pick-up experiments have been performed repeatedly for hundreds of times from which the separation speed and the force between the stamp and the donor substrate are extracted as signal features. The SVM model with a Gaussian kernel function is designed to classify pick-up results into success and failure. In addition, the optimal cost parameter <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> as well as the Gaussian kernel function parameter gamma <inline-formula> <tex-math notation="LaTeX">(\gamma) </tex-math></inline-formula> has been optimized, leading to the improvement of the classification by Particle Swarm Optimization (PSO) algorithm. Finally, an 85% classification accuracy is achieved based on the SVM model, implying that more sophisticated definition of signal features is demanded in future work.]]></description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2020.2995710</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adhesive stamp ; Algorithms ; Classification ; Feature extraction ; Force ; Kernel ; Kernel functions ; Light emitting diodes ; mass-transfer ; Mathematical model ; Mathematical models ; micro-LEDs ; Parameters ; Particle swarm optimization ; Printing ; Substrates ; support vector machine model ; Support vector machines</subject><ispartof>IEEE journal of the Electron Devices Society, 2020, Vol.8, p.554-558</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-180c393d28ccd2d34cd3c76534f98c9ede769ca3d342cd1c44c07df18480fad3</citedby><cites>FETCH-LOGICAL-c402t-180c393d28ccd2d34cd3c76534f98c9ede769ca3d342cd1c44c07df18480fad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9096346$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Guo, Weijie</creatorcontrib><creatorcontrib>Su, Changwen</creatorcontrib><creatorcontrib>Li, Xilong</creatorcontrib><creatorcontrib>Lu, Yijun</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Zhu, Lihong</creatorcontrib><title>Optimization on Adhesive Stamp Mass-Transfer of Micro-LEDs With Support Vector Machine Model</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description><![CDATA[In this work, the process of adhesive stamp mass-transfer of micro light-emitting diode (micro-LED) is optimized by a Support Vector Machine (SVM) model. The pick-up experiments have been performed repeatedly for hundreds of times from which the separation speed and the force between the stamp and the donor substrate are extracted as signal features. The SVM model with a Gaussian kernel function is designed to classify pick-up results into success and failure. In addition, the optimal cost parameter <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> as well as the Gaussian kernel function parameter gamma <inline-formula> <tex-math notation="LaTeX">(\gamma) </tex-math></inline-formula> has been optimized, leading to the improvement of the classification by Particle Swarm Optimization (PSO) algorithm. Finally, an 85% classification accuracy is achieved based on the SVM model, implying that more sophisticated definition of signal features is demanded in future work.]]></description><subject>Adhesive stamp</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Feature extraction</subject><subject>Force</subject><subject>Kernel</subject><subject>Kernel functions</subject><subject>Light emitting diodes</subject><subject>mass-transfer</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>micro-LEDs</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Printing</subject><subject>Substrates</subject><subject>support vector machine model</subject><subject>Support vector machines</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rWzEMvYwNWrr-gNIXw55v6q9rXz-WJOs6EvqQsL4UjCvbi0MS39lOofv1dZYQJgQS0tGR0GmaG4JHhGB193M6WYwopnhEleokwZ-aS0pE3wrJ-Of_8ovmOuc1rtYToYS4bF6ehhK24a8pIe5Q9Xu7cjm8ObQoZjugucm5XSazy94lFD2aB0ixnU0nGT2HskKL_TDEVNAvByWmiodV2Dk0j9ZtvjZfvNlkd32KV83y-3Q5_tHOnh4ex_ezFjimpSU9BqaYpT2ApZZxsAyk6Bj3qgflrJNCgWG1Q8ES4BywtJ70vMfeWHbVPB5pbTRrPaSwNeldRxP0v0JMv7VJJcDGafHqKSHSMC8Up4opAxgkSOWo6DrZVa5vR64hxT97l4tex33a1es15QR3dSnpK4ocUfUXOSfnz1sJ1gdJ9EESfZBEnySpM7fHmeCcO-MVVoJxwT4ARZ2GBg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Lu, Hao</creator><creator>Guo, Weijie</creator><creator>Su, Changwen</creator><creator>Li, Xilong</creator><creator>Lu, Yijun</creator><creator>Chen, Zhong</creator><creator>Zhu, Lihong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Optimization on Adhesive Stamp Mass-Transfer of Micro-LEDs With Support Vector Machine Model</title><author>Lu, Hao ; Guo, Weijie ; Su, Changwen ; Li, Xilong ; Lu, Yijun ; Chen, Zhong ; Zhu, Lihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-180c393d28ccd2d34cd3c76534f98c9ede769ca3d342cd1c44c07df18480fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesive stamp</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Feature extraction</topic><topic>Force</topic><topic>Kernel</topic><topic>Kernel functions</topic><topic>Light emitting diodes</topic><topic>mass-transfer</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>micro-LEDs</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Printing</topic><topic>Substrates</topic><topic>support vector machine model</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Guo, Weijie</creatorcontrib><creatorcontrib>Su, Changwen</creatorcontrib><creatorcontrib>Li, Xilong</creatorcontrib><creatorcontrib>Lu, Yijun</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Zhu, Lihong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hao</au><au>Guo, Weijie</au><au>Su, Changwen</au><au>Li, Xilong</au><au>Lu, Yijun</au><au>Chen, Zhong</au><au>Zhu, Lihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization on Adhesive Stamp Mass-Transfer of Micro-LEDs With Support Vector Machine Model</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>554</spage><epage>558</epage><pages>554-558</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract><![CDATA[In this work, the process of adhesive stamp mass-transfer of micro light-emitting diode (micro-LED) is optimized by a Support Vector Machine (SVM) model. The pick-up experiments have been performed repeatedly for hundreds of times from which the separation speed and the force between the stamp and the donor substrate are extracted as signal features. The SVM model with a Gaussian kernel function is designed to classify pick-up results into success and failure. In addition, the optimal cost parameter <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> as well as the Gaussian kernel function parameter gamma <inline-formula> <tex-math notation="LaTeX">(\gamma) </tex-math></inline-formula> has been optimized, leading to the improvement of the classification by Particle Swarm Optimization (PSO) algorithm. Finally, an 85% classification accuracy is achieved based on the SVM model, implying that more sophisticated definition of signal features is demanded in future work.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2020.2995710</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6734
ispartof IEEE journal of the Electron Devices Society, 2020, Vol.8, p.554-558
issn 2168-6734
2168-6734
language eng
recordid cdi_proquest_journals_2410518418
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adhesive stamp
Algorithms
Classification
Feature extraction
Force
Kernel
Kernel functions
Light emitting diodes
mass-transfer
Mathematical model
Mathematical models
micro-LEDs
Parameters
Particle swarm optimization
Printing
Substrates
support vector machine model
Support vector machines
title Optimization on Adhesive Stamp Mass-Transfer of Micro-LEDs With Support Vector Machine Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20on%20Adhesive%20Stamp%20Mass-Transfer%20of%20Micro-LEDs%20With%20Support%20Vector%20Machine%20Model&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Lu,%20Hao&rft.date=2020&rft.volume=8&rft.spage=554&rft.epage=558&rft.pages=554-558&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2020.2995710&rft_dat=%3Cproquest_cross%3E2410518418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410518418&rft_id=info:pmid/&rft_ieee_id=9096346&rft_doaj_id=oai_doaj_org_article_6bf2117a3f6942939ac0c7c79e265575&rfr_iscdi=true