Design and Characterization of High-Q SAW Resonators Based on the AlN/Sapphire Structure Intended for High-Temperature Wireless Sensor Applications
Aluminium nitride piezoelectric thin films grown on sapphire are strong candidates for high-temperature surface acoustic wave (SAW) sensors, due to their thermal stability, large bandgap, high acoustic velocity and suitable electromechanical coupling. However, thin-film resonators need more design e...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2020-07, Vol.20 (13), p.6985-6991 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6991 |
---|---|
container_issue | 13 |
container_start_page | 6985 |
container_title | IEEE sensors journal |
container_volume | 20 |
creator | Streque, Jeremy Camus, Julien Laroche, Thierry Hage-Ali, Sami M'Jahed, Hamid Rammal, Mohammad Aubert, Thierry Djouadi, Mohamed Abdou Ballandras, Sylvain Elmazria, Omar |
description | Aluminium nitride piezoelectric thin films grown on sapphire are strong candidates for high-temperature surface acoustic wave (SAW) sensors, due to their thermal stability, large bandgap, high acoustic velocity and suitable electromechanical coupling. However, thin-film resonators need more design efforts than those based on bulk crystals, due to the usually limited thickness of the piezoelectric films, and to acoustic properties disparities between the latters and their host substrate. This work presents an optimization of AlN/Sapphire-based SAW resonators with high quality factors for high-temperature applications. It combines specifically grown, 3~\mu \text{m} -thick aluminium nitride films, with the use of aluminium electrodes for their low density and resistivity, as an alternative to heavier electrodes like Pt. These electrodes allow for much lower mechanical losses and higher quality factors, in spite of needing passivation for increased lifetime. A standard resonator design is first presented and used for preliminary tests, in order to monitor the AlN/Sapphire structure with unprotected aluminium electrodes, for temperatures up to 600°C. A quasi-synchronous, optimized design is then proposed for higher quality factors and wireless sensing compliance. The high temperature characterizations confirmed that much larger quality factors can be retrieved from this optimized design. The quasi-synchronous resonators proposed in this study remain well-tuned for temperatures up to 400°C, and show high quality factors, as high as 3400 at 400°C. |
doi_str_mv | 10.1109/JSEN.2020.2978179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2410516878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9024127</ieee_id><sourcerecordid>2410516878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-e4ed5e9966bed2ad4dff341583f5d0746f5475e994bc9116aef118de1e786d9f3</originalsourceid><addsrcrecordid>eNo90VFv1SAYBuDGaOKc_gDjDYlXXvQMWihwWY9zZ-ZkRjsz7wgrHytLVzrgmLi_4R-Wrsuu-AIPLyRvUbwneEMIliffutOLTYUrvKkkF4TLF8URYUyUhFPxcplrXNKa_35dvInxFmMiOeNHxb8vEN3NhPRk0HbQQfcJgnvQyfkJeYt27mYof6CuvUI_IfpJJx8i-qwjGJRFGgC148VJp-d5cAFQl8KhT4c8nU8JJpOZ9WGNuYS7GYJ-PL3KeIQYUQdTzKCd59H1j8_Gt8Urq8cI757W4-LX19PL7a7cfz8737b7sq85TiVQMAykbJprMJU21FhbU8JEbZnBnDaWUb4Aet1LQhoNlhBhgAAXjZG2Pi4-rbmDHtUc3J0Of5XXTu3avVr2cCUaxqrqD8n242rn4O8PEJO69Ycw5e-pihLMSCO4yIqsqg8-xgD2OZZgtfSklp7U0pN66inf-bDecQDw7CXOsRWv_wOnYo_l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410516878</pqid></control><display><type>article</type><title>Design and Characterization of High-Q SAW Resonators Based on the AlN/Sapphire Structure Intended for High-Temperature Wireless Sensor Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Streque, Jeremy ; Camus, Julien ; Laroche, Thierry ; Hage-Ali, Sami ; M'Jahed, Hamid ; Rammal, Mohammad ; Aubert, Thierry ; Djouadi, Mohamed Abdou ; Ballandras, Sylvain ; Elmazria, Omar</creator><creatorcontrib>Streque, Jeremy ; Camus, Julien ; Laroche, Thierry ; Hage-Ali, Sami ; M'Jahed, Hamid ; Rammal, Mohammad ; Aubert, Thierry ; Djouadi, Mohamed Abdou ; Ballandras, Sylvain ; Elmazria, Omar</creatorcontrib><description>Aluminium nitride piezoelectric thin films grown on sapphire are strong candidates for high-temperature surface acoustic wave (SAW) sensors, due to their thermal stability, large bandgap, high acoustic velocity and suitable electromechanical coupling. However, thin-film resonators need more design efforts than those based on bulk crystals, due to the usually limited thickness of the piezoelectric films, and to acoustic properties disparities between the latters and their host substrate. This work presents an optimization of AlN/Sapphire-based SAW resonators with high quality factors for high-temperature applications. It combines specifically grown, <inline-formula> <tex-math notation="LaTeX">3~\mu \text{m} </tex-math></inline-formula>-thick aluminium nitride films, with the use of aluminium electrodes for their low density and resistivity, as an alternative to heavier electrodes like Pt. These electrodes allow for much lower mechanical losses and higher quality factors, in spite of needing passivation for increased lifetime. A standard resonator design is first presented and used for preliminary tests, in order to monitor the AlN/Sapphire structure with unprotected aluminium electrodes, for temperatures up to 600°C. A quasi-synchronous, optimized design is then proposed for higher quality factors and wireless sensing compliance. The high temperature characterizations confirmed that much larger quality factors can be retrieved from this optimized design. The quasi-synchronous resonators proposed in this study remain well-tuned for temperatures up to 400°C, and show high quality factors, as high as 3400 at 400°C.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.2978179</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic properties ; Acoustic velocity ; Acoustics ; aluminium nitride ; Aluminum nitride ; Design optimization ; Design standards ; Electrodes ; Engineering Sciences ; High temperature ; III-V semiconductor materials ; Micro and nanotechnologies ; Microelectronics ; Piezoelectric films ; Piezoelectricity ; Q factors ; Q-factor ; Quality ; Resonators ; Sapphire ; Sensors ; Substrates ; Surface acoustic wave devices ; Surface acoustic waves ; Temperature ; Thermal stability ; Thick films ; Thickness ; Thin films</subject><ispartof>IEEE sensors journal, 2020-07, Vol.20 (13), p.6985-6991</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-e4ed5e9966bed2ad4dff341583f5d0746f5475e994bc9116aef118de1e786d9f3</citedby><cites>FETCH-LOGICAL-c370t-e4ed5e9966bed2ad4dff341583f5d0746f5475e994bc9116aef118de1e786d9f3</cites><orcidid>0000-0002-5139-7277 ; 0000-0001-5148-770X ; 0000-0001-6666-1803 ; 0000-0003-4917-9120 ; 0000-0003-2989-6173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9024127$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9024127$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02865522$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Streque, Jeremy</creatorcontrib><creatorcontrib>Camus, Julien</creatorcontrib><creatorcontrib>Laroche, Thierry</creatorcontrib><creatorcontrib>Hage-Ali, Sami</creatorcontrib><creatorcontrib>M'Jahed, Hamid</creatorcontrib><creatorcontrib>Rammal, Mohammad</creatorcontrib><creatorcontrib>Aubert, Thierry</creatorcontrib><creatorcontrib>Djouadi, Mohamed Abdou</creatorcontrib><creatorcontrib>Ballandras, Sylvain</creatorcontrib><creatorcontrib>Elmazria, Omar</creatorcontrib><title>Design and Characterization of High-Q SAW Resonators Based on the AlN/Sapphire Structure Intended for High-Temperature Wireless Sensor Applications</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Aluminium nitride piezoelectric thin films grown on sapphire are strong candidates for high-temperature surface acoustic wave (SAW) sensors, due to their thermal stability, large bandgap, high acoustic velocity and suitable electromechanical coupling. However, thin-film resonators need more design efforts than those based on bulk crystals, due to the usually limited thickness of the piezoelectric films, and to acoustic properties disparities between the latters and their host substrate. This work presents an optimization of AlN/Sapphire-based SAW resonators with high quality factors for high-temperature applications. It combines specifically grown, <inline-formula> <tex-math notation="LaTeX">3~\mu \text{m} </tex-math></inline-formula>-thick aluminium nitride films, with the use of aluminium electrodes for their low density and resistivity, as an alternative to heavier electrodes like Pt. These electrodes allow for much lower mechanical losses and higher quality factors, in spite of needing passivation for increased lifetime. A standard resonator design is first presented and used for preliminary tests, in order to monitor the AlN/Sapphire structure with unprotected aluminium electrodes, for temperatures up to 600°C. A quasi-synchronous, optimized design is then proposed for higher quality factors and wireless sensing compliance. The high temperature characterizations confirmed that much larger quality factors can be retrieved from this optimized design. The quasi-synchronous resonators proposed in this study remain well-tuned for temperatures up to 400°C, and show high quality factors, as high as 3400 at 400°C.</description><subject>Acoustic properties</subject><subject>Acoustic velocity</subject><subject>Acoustics</subject><subject>aluminium nitride</subject><subject>Aluminum nitride</subject><subject>Design optimization</subject><subject>Design standards</subject><subject>Electrodes</subject><subject>Engineering Sciences</subject><subject>High temperature</subject><subject>III-V semiconductor materials</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Piezoelectric films</subject><subject>Piezoelectricity</subject><subject>Q factors</subject><subject>Q-factor</subject><subject>Quality</subject><subject>Resonators</subject><subject>Sapphire</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Surface acoustic wave devices</subject><subject>Surface acoustic waves</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Thick films</subject><subject>Thickness</subject><subject>Thin films</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo90VFv1SAYBuDGaOKc_gDjDYlXXvQMWihwWY9zZ-ZkRjsz7wgrHytLVzrgmLi_4R-Wrsuu-AIPLyRvUbwneEMIliffutOLTYUrvKkkF4TLF8URYUyUhFPxcplrXNKa_35dvInxFmMiOeNHxb8vEN3NhPRk0HbQQfcJgnvQyfkJeYt27mYof6CuvUI_IfpJJx8i-qwjGJRFGgC148VJp-d5cAFQl8KhT4c8nU8JJpOZ9WGNuYS7GYJ-PL3KeIQYUQdTzKCd59H1j8_Gt8Urq8cI757W4-LX19PL7a7cfz8737b7sq85TiVQMAykbJprMJU21FhbU8JEbZnBnDaWUb4Aet1LQhoNlhBhgAAXjZG2Pi4-rbmDHtUc3J0Of5XXTu3avVr2cCUaxqrqD8n242rn4O8PEJO69Ycw5e-pihLMSCO4yIqsqg8-xgD2OZZgtfSklp7U0pN66inf-bDecQDw7CXOsRWv_wOnYo_l</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Streque, Jeremy</creator><creator>Camus, Julien</creator><creator>Laroche, Thierry</creator><creator>Hage-Ali, Sami</creator><creator>M'Jahed, Hamid</creator><creator>Rammal, Mohammad</creator><creator>Aubert, Thierry</creator><creator>Djouadi, Mohamed Abdou</creator><creator>Ballandras, Sylvain</creator><creator>Elmazria, Omar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5139-7277</orcidid><orcidid>https://orcid.org/0000-0001-5148-770X</orcidid><orcidid>https://orcid.org/0000-0001-6666-1803</orcidid><orcidid>https://orcid.org/0000-0003-4917-9120</orcidid><orcidid>https://orcid.org/0000-0003-2989-6173</orcidid></search><sort><creationdate>20200701</creationdate><title>Design and Characterization of High-Q SAW Resonators Based on the AlN/Sapphire Structure Intended for High-Temperature Wireless Sensor Applications</title><author>Streque, Jeremy ; Camus, Julien ; Laroche, Thierry ; Hage-Ali, Sami ; M'Jahed, Hamid ; Rammal, Mohammad ; Aubert, Thierry ; Djouadi, Mohamed Abdou ; Ballandras, Sylvain ; Elmazria, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-e4ed5e9966bed2ad4dff341583f5d0746f5475e994bc9116aef118de1e786d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic properties</topic><topic>Acoustic velocity</topic><topic>Acoustics</topic><topic>aluminium nitride</topic><topic>Aluminum nitride</topic><topic>Design optimization</topic><topic>Design standards</topic><topic>Electrodes</topic><topic>Engineering Sciences</topic><topic>High temperature</topic><topic>III-V semiconductor materials</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Piezoelectric films</topic><topic>Piezoelectricity</topic><topic>Q factors</topic><topic>Q-factor</topic><topic>Quality</topic><topic>Resonators</topic><topic>Sapphire</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Surface acoustic wave devices</topic><topic>Surface acoustic waves</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Thick films</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Streque, Jeremy</creatorcontrib><creatorcontrib>Camus, Julien</creatorcontrib><creatorcontrib>Laroche, Thierry</creatorcontrib><creatorcontrib>Hage-Ali, Sami</creatorcontrib><creatorcontrib>M'Jahed, Hamid</creatorcontrib><creatorcontrib>Rammal, Mohammad</creatorcontrib><creatorcontrib>Aubert, Thierry</creatorcontrib><creatorcontrib>Djouadi, Mohamed Abdou</creatorcontrib><creatorcontrib>Ballandras, Sylvain</creatorcontrib><creatorcontrib>Elmazria, Omar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Streque, Jeremy</au><au>Camus, Julien</au><au>Laroche, Thierry</au><au>Hage-Ali, Sami</au><au>M'Jahed, Hamid</au><au>Rammal, Mohammad</au><au>Aubert, Thierry</au><au>Djouadi, Mohamed Abdou</au><au>Ballandras, Sylvain</au><au>Elmazria, Omar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Characterization of High-Q SAW Resonators Based on the AlN/Sapphire Structure Intended for High-Temperature Wireless Sensor Applications</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>20</volume><issue>13</issue><spage>6985</spage><epage>6991</epage><pages>6985-6991</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Aluminium nitride piezoelectric thin films grown on sapphire are strong candidates for high-temperature surface acoustic wave (SAW) sensors, due to their thermal stability, large bandgap, high acoustic velocity and suitable electromechanical coupling. However, thin-film resonators need more design efforts than those based on bulk crystals, due to the usually limited thickness of the piezoelectric films, and to acoustic properties disparities between the latters and their host substrate. This work presents an optimization of AlN/Sapphire-based SAW resonators with high quality factors for high-temperature applications. It combines specifically grown, <inline-formula> <tex-math notation="LaTeX">3~\mu \text{m} </tex-math></inline-formula>-thick aluminium nitride films, with the use of aluminium electrodes for their low density and resistivity, as an alternative to heavier electrodes like Pt. These electrodes allow for much lower mechanical losses and higher quality factors, in spite of needing passivation for increased lifetime. A standard resonator design is first presented and used for preliminary tests, in order to monitor the AlN/Sapphire structure with unprotected aluminium electrodes, for temperatures up to 600°C. A quasi-synchronous, optimized design is then proposed for higher quality factors and wireless sensing compliance. The high temperature characterizations confirmed that much larger quality factors can be retrieved from this optimized design. The quasi-synchronous resonators proposed in this study remain well-tuned for temperatures up to 400°C, and show high quality factors, as high as 3400 at 400°C.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.2978179</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5139-7277</orcidid><orcidid>https://orcid.org/0000-0001-5148-770X</orcidid><orcidid>https://orcid.org/0000-0001-6666-1803</orcidid><orcidid>https://orcid.org/0000-0003-4917-9120</orcidid><orcidid>https://orcid.org/0000-0003-2989-6173</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2020-07, Vol.20 (13), p.6985-6991 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2410516878 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic properties Acoustic velocity Acoustics aluminium nitride Aluminum nitride Design optimization Design standards Electrodes Engineering Sciences High temperature III-V semiconductor materials Micro and nanotechnologies Microelectronics Piezoelectric films Piezoelectricity Q factors Q-factor Quality Resonators Sapphire Sensors Substrates Surface acoustic wave devices Surface acoustic waves Temperature Thermal stability Thick films Thickness Thin films |
title | Design and Characterization of High-Q SAW Resonators Based on the AlN/Sapphire Structure Intended for High-Temperature Wireless Sensor Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Characterization%20of%20High-Q%20SAW%20Resonators%20Based%20on%20the%20AlN/Sapphire%20Structure%20Intended%20for%20High-Temperature%20Wireless%20Sensor%20Applications&rft.jtitle=IEEE%20sensors%20journal&rft.au=Streque,%20Jeremy&rft.date=2020-07-01&rft.volume=20&rft.issue=13&rft.spage=6985&rft.epage=6991&rft.pages=6985-6991&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.2978179&rft_dat=%3Cproquest_RIE%3E2410516878%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410516878&rft_id=info:pmid/&rft_ieee_id=9024127&rfr_iscdi=true |