Illuminating the mysteries of wolf history
One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter & Stew...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2020-05, Vol.29 (9), p.1589-1591 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1591 |
---|---|
container_issue | 9 |
container_start_page | 1589 |
container_title | Molecular ecology |
container_volume | 29 |
creator | Schweizer, Rena M. Wayne, Robert K. |
description | One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter & Stewart 2009; Burbrink et al. 2016). Perhaps such continuity should not be expected as the Pleistocene is marked by episodes of climate change, glaciation and the invasions of humans into previously isolated areas. Although fossils are one of the primary sources for inferring population continuity, a problem with fossil material is that, even if similar morphological forms might exist in a place over time, they may not be from the same genetic lineage. There are now readily available methods to assess genetic continuity solely from DNA found in fossil material, provided the record is fairly continuous. In a From the Cover article in this issue of Molecular Ecology, Loog et al. (2020) apply some of these readily available methods to analyse mitochondrial genomes and model the demography of wolves over the last 50,000 years. |
doi_str_mv | 10.1111/mec.15438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409962866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409962866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4548-4022abd522e632cd307c807f2dca889f253a5322a873936e83a6a4bd64e935ef3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUgIMobk4P_gNS8KTQLb-bHqVMHUy8KHgLWfviOtp1Ji2j__2ind7M5V0-vvfyIXRN8JSEN6shnxLBmTpBY8KkiGnKP07RGKeSxgQrNkIX3m8wJowKcY5GjFIlE8LH6H5RVV1dbk1bbj-jdg1R3fsWXAk-amy0byobrUvfNq6_RGfWVB6ujnOC3h_nb9lzvHx9WmQPyzjngquYY0rNqhCUgmQ0LxhOcoUTS4vcKJVaKpgR4QCjEpYyCYoZafiqkBxSJsCyCbodvDvXfHXgW71pOrcNKzXlOA1_UlIG6m6gctd478DqnStr43pNsP6uokMV_VMlsDdHY7eqofgjfzMEYDYA-7KC_n-Tfplng_IAvzZpsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409962866</pqid></control><display><type>article</type><title>Illuminating the mysteries of wolf history</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schweizer, Rena M. ; Wayne, Robert K.</creator><creatorcontrib>Schweizer, Rena M. ; Wayne, Robert K.</creatorcontrib><description>One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter & Stewart 2009; Burbrink et al. 2016). Perhaps such continuity should not be expected as the Pleistocene is marked by episodes of climate change, glaciation and the invasions of humans into previously isolated areas. Although fossils are one of the primary sources for inferring population continuity, a problem with fossil material is that, even if similar morphological forms might exist in a place over time, they may not be from the same genetic lineage. There are now readily available methods to assess genetic continuity solely from DNA found in fossil material, provided the record is fairly continuous. In a From the Cover article in this issue of Molecular Ecology, Loog et al. (2020) apply some of these readily available methods to analyse mitochondrial genomes and model the demography of wolves over the last 50,000 years.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.15438</identifier><identifier>PMID: 32286714</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>ancient DNA ; Climate change ; Demography ; Deoxyribonucleic acid ; DNA ; Fossils ; Genomes ; genomics/proteomics ; Glaciation ; Glaciology ; mammals ; Mitochondria ; Plants ; Pleistocene ; Pleistocene megafauna ; population genetics ‐ empirical ; Population studies ; Vertebrates ; Wolves</subject><ispartof>Molecular ecology, 2020-05, Vol.29 (9), p.1589-1591</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd.</rights><rights>Copyright © 2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4548-4022abd522e632cd307c807f2dca889f253a5322a873936e83a6a4bd64e935ef3</citedby><cites>FETCH-LOGICAL-c4548-4022abd522e632cd307c807f2dca889f253a5322a873936e83a6a4bd64e935ef3</cites><orcidid>0000-0002-8812-8177 ; 0000-0003-3537-2245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.15438$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.15438$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32286714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schweizer, Rena M.</creatorcontrib><creatorcontrib>Wayne, Robert K.</creatorcontrib><title>Illuminating the mysteries of wolf history</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter & Stewart 2009; Burbrink et al. 2016). Perhaps such continuity should not be expected as the Pleistocene is marked by episodes of climate change, glaciation and the invasions of humans into previously isolated areas. Although fossils are one of the primary sources for inferring population continuity, a problem with fossil material is that, even if similar morphological forms might exist in a place over time, they may not be from the same genetic lineage. There are now readily available methods to assess genetic continuity solely from DNA found in fossil material, provided the record is fairly continuous. In a From the Cover article in this issue of Molecular Ecology, Loog et al. (2020) apply some of these readily available methods to analyse mitochondrial genomes and model the demography of wolves over the last 50,000 years.</description><subject>ancient DNA</subject><subject>Climate change</subject><subject>Demography</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fossils</subject><subject>Genomes</subject><subject>genomics/proteomics</subject><subject>Glaciation</subject><subject>Glaciology</subject><subject>mammals</subject><subject>Mitochondria</subject><subject>Plants</subject><subject>Pleistocene</subject><subject>Pleistocene megafauna</subject><subject>population genetics ‐ empirical</subject><subject>Population studies</subject><subject>Vertebrates</subject><subject>Wolves</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUgIMobk4P_gNS8KTQLb-bHqVMHUy8KHgLWfviOtp1Ji2j__2ind7M5V0-vvfyIXRN8JSEN6shnxLBmTpBY8KkiGnKP07RGKeSxgQrNkIX3m8wJowKcY5GjFIlE8LH6H5RVV1dbk1bbj-jdg1R3fsWXAk-amy0byobrUvfNq6_RGfWVB6ujnOC3h_nb9lzvHx9WmQPyzjngquYY0rNqhCUgmQ0LxhOcoUTS4vcKJVaKpgR4QCjEpYyCYoZafiqkBxSJsCyCbodvDvXfHXgW71pOrcNKzXlOA1_UlIG6m6gctd478DqnStr43pNsP6uokMV_VMlsDdHY7eqofgjfzMEYDYA-7KC_n-Tfplng_IAvzZpsQ</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Schweizer, Rena M.</creator><creator>Wayne, Robert K.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-8812-8177</orcidid><orcidid>https://orcid.org/0000-0003-3537-2245</orcidid></search><sort><creationdate>202005</creationdate><title>Illuminating the mysteries of wolf history</title><author>Schweizer, Rena M. ; Wayne, Robert K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4548-4022abd522e632cd307c807f2dca889f253a5322a873936e83a6a4bd64e935ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ancient DNA</topic><topic>Climate change</topic><topic>Demography</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fossils</topic><topic>Genomes</topic><topic>genomics/proteomics</topic><topic>Glaciation</topic><topic>Glaciology</topic><topic>mammals</topic><topic>Mitochondria</topic><topic>Plants</topic><topic>Pleistocene</topic><topic>Pleistocene megafauna</topic><topic>population genetics ‐ empirical</topic><topic>Population studies</topic><topic>Vertebrates</topic><topic>Wolves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schweizer, Rena M.</creatorcontrib><creatorcontrib>Wayne, Robert K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schweizer, Rena M.</au><au>Wayne, Robert K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illuminating the mysteries of wolf history</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>29</volume><issue>9</issue><spage>1589</spage><epage>1591</epage><pages>1589-1591</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter & Stewart 2009; Burbrink et al. 2016). Perhaps such continuity should not be expected as the Pleistocene is marked by episodes of climate change, glaciation and the invasions of humans into previously isolated areas. Although fossils are one of the primary sources for inferring population continuity, a problem with fossil material is that, even if similar morphological forms might exist in a place over time, they may not be from the same genetic lineage. There are now readily available methods to assess genetic continuity solely from DNA found in fossil material, provided the record is fairly continuous. In a From the Cover article in this issue of Molecular Ecology, Loog et al. (2020) apply some of these readily available methods to analyse mitochondrial genomes and model the demography of wolves over the last 50,000 years.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32286714</pmid><doi>10.1111/mec.15438</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-8812-8177</orcidid><orcidid>https://orcid.org/0000-0003-3537-2245</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2020-05, Vol.29 (9), p.1589-1591 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_journals_2409962866 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | ancient DNA Climate change Demography Deoxyribonucleic acid DNA Fossils Genomes genomics/proteomics Glaciation Glaciology mammals Mitochondria Plants Pleistocene Pleistocene megafauna population genetics ‐ empirical Population studies Vertebrates Wolves |
title | Illuminating the mysteries of wolf history |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illuminating%20the%20mysteries%20of%20wolf%20history&rft.jtitle=Molecular%20ecology&rft.au=Schweizer,%20Rena%20M.&rft.date=2020-05&rft.volume=29&rft.issue=9&rft.spage=1589&rft.epage=1591&rft.pages=1589-1591&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.15438&rft_dat=%3Cproquest_cross%3E2409962866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409962866&rft_id=info:pmid/32286714&rfr_iscdi=true |