Illuminating the mysteries of wolf history

One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter & Stew...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2020-05, Vol.29 (9), p.1589-1591
Hauptverfasser: Schweizer, Rena M., Wayne, Robert K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1591
container_issue 9
container_start_page 1589
container_title Molecular ecology
container_volume 29
creator Schweizer, Rena M.
Wayne, Robert K.
description One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter & Stewart 2009; Burbrink et al. 2016). Perhaps such continuity should not be expected as the Pleistocene is marked by episodes of climate change, glaciation and the invasions of humans into previously isolated areas. Although fossils are one of the primary sources for inferring population continuity, a problem with fossil material is that, even if similar morphological forms might exist in a place over time, they may not be from the same genetic lineage. There are now readily available methods to assess genetic continuity solely from DNA found in fossil material, provided the record is fairly continuous. In a From the Cover article in this issue of Molecular Ecology, Loog et al. (2020) apply some of these readily available methods to analyse mitochondrial genomes and model the demography of wolves over the last 50,000 years.
doi_str_mv 10.1111/mec.15438
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409962866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409962866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4548-4022abd522e632cd307c807f2dca889f253a5322a873936e83a6a4bd64e935ef3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUgIMobk4P_gNS8KTQLb-bHqVMHUy8KHgLWfviOtp1Ji2j__2ind7M5V0-vvfyIXRN8JSEN6shnxLBmTpBY8KkiGnKP07RGKeSxgQrNkIX3m8wJowKcY5GjFIlE8LH6H5RVV1dbk1bbj-jdg1R3fsWXAk-amy0byobrUvfNq6_RGfWVB6ujnOC3h_nb9lzvHx9WmQPyzjngquYY0rNqhCUgmQ0LxhOcoUTS4vcKJVaKpgR4QCjEpYyCYoZafiqkBxSJsCyCbodvDvXfHXgW71pOrcNKzXlOA1_UlIG6m6gctd478DqnStr43pNsP6uokMV_VMlsDdHY7eqofgjfzMEYDYA-7KC_n-Tfplng_IAvzZpsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409962866</pqid></control><display><type>article</type><title>Illuminating the mysteries of wolf history</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schweizer, Rena M. ; Wayne, Robert K.</creator><creatorcontrib>Schweizer, Rena M. ; Wayne, Robert K.</creatorcontrib><description>One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter &amp; Stewart 2009; Burbrink et al. 2016). Perhaps such continuity should not be expected as the Pleistocene is marked by episodes of climate change, glaciation and the invasions of humans into previously isolated areas. Although fossils are one of the primary sources for inferring population continuity, a problem with fossil material is that, even if similar morphological forms might exist in a place over time, they may not be from the same genetic lineage. There are now readily available methods to assess genetic continuity solely from DNA found in fossil material, provided the record is fairly continuous. In a From the Cover article in this issue of Molecular Ecology, Loog et al. (2020) apply some of these readily available methods to analyse mitochondrial genomes and model the demography of wolves over the last 50,000 years.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.15438</identifier><identifier>PMID: 32286714</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>ancient DNA ; Climate change ; Demography ; Deoxyribonucleic acid ; DNA ; Fossils ; Genomes ; genomics/proteomics ; Glaciation ; Glaciology ; mammals ; Mitochondria ; Plants ; Pleistocene ; Pleistocene megafauna ; population genetics ‐ empirical ; Population studies ; Vertebrates ; Wolves</subject><ispartof>Molecular ecology, 2020-05, Vol.29 (9), p.1589-1591</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4548-4022abd522e632cd307c807f2dca889f253a5322a873936e83a6a4bd64e935ef3</citedby><cites>FETCH-LOGICAL-c4548-4022abd522e632cd307c807f2dca889f253a5322a873936e83a6a4bd64e935ef3</cites><orcidid>0000-0002-8812-8177 ; 0000-0003-3537-2245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.15438$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.15438$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32286714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schweizer, Rena M.</creatorcontrib><creatorcontrib>Wayne, Robert K.</creatorcontrib><title>Illuminating the mysteries of wolf history</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter &amp; Stewart 2009; Burbrink et al. 2016). Perhaps such continuity should not be expected as the Pleistocene is marked by episodes of climate change, glaciation and the invasions of humans into previously isolated areas. Although fossils are one of the primary sources for inferring population continuity, a problem with fossil material is that, even if similar morphological forms might exist in a place over time, they may not be from the same genetic lineage. There are now readily available methods to assess genetic continuity solely from DNA found in fossil material, provided the record is fairly continuous. In a From the Cover article in this issue of Molecular Ecology, Loog et al. (2020) apply some of these readily available methods to analyse mitochondrial genomes and model the demography of wolves over the last 50,000 years.</description><subject>ancient DNA</subject><subject>Climate change</subject><subject>Demography</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fossils</subject><subject>Genomes</subject><subject>genomics/proteomics</subject><subject>Glaciation</subject><subject>Glaciology</subject><subject>mammals</subject><subject>Mitochondria</subject><subject>Plants</subject><subject>Pleistocene</subject><subject>Pleistocene megafauna</subject><subject>population genetics ‐ empirical</subject><subject>Population studies</subject><subject>Vertebrates</subject><subject>Wolves</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUgIMobk4P_gNS8KTQLb-bHqVMHUy8KHgLWfviOtp1Ji2j__2ind7M5V0-vvfyIXRN8JSEN6shnxLBmTpBY8KkiGnKP07RGKeSxgQrNkIX3m8wJowKcY5GjFIlE8LH6H5RVV1dbk1bbj-jdg1R3fsWXAk-amy0byobrUvfNq6_RGfWVB6ujnOC3h_nb9lzvHx9WmQPyzjngquYY0rNqhCUgmQ0LxhOcoUTS4vcKJVaKpgR4QCjEpYyCYoZafiqkBxSJsCyCbodvDvXfHXgW71pOrcNKzXlOA1_UlIG6m6gctd478DqnStr43pNsP6uokMV_VMlsDdHY7eqofgjfzMEYDYA-7KC_n-Tfplng_IAvzZpsQ</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Schweizer, Rena M.</creator><creator>Wayne, Robert K.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-8812-8177</orcidid><orcidid>https://orcid.org/0000-0003-3537-2245</orcidid></search><sort><creationdate>202005</creationdate><title>Illuminating the mysteries of wolf history</title><author>Schweizer, Rena M. ; Wayne, Robert K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4548-4022abd522e632cd307c807f2dca889f253a5322a873936e83a6a4bd64e935ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ancient DNA</topic><topic>Climate change</topic><topic>Demography</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fossils</topic><topic>Genomes</topic><topic>genomics/proteomics</topic><topic>Glaciation</topic><topic>Glaciology</topic><topic>mammals</topic><topic>Mitochondria</topic><topic>Plants</topic><topic>Pleistocene</topic><topic>Pleistocene megafauna</topic><topic>population genetics ‐ empirical</topic><topic>Population studies</topic><topic>Vertebrates</topic><topic>Wolves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schweizer, Rena M.</creatorcontrib><creatorcontrib>Wayne, Robert K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schweizer, Rena M.</au><au>Wayne, Robert K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illuminating the mysteries of wolf history</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>29</volume><issue>9</issue><spage>1589</spage><epage>1591</epage><pages>1589-1591</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter &amp; Stewart 2009; Burbrink et al. 2016). Perhaps such continuity should not be expected as the Pleistocene is marked by episodes of climate change, glaciation and the invasions of humans into previously isolated areas. Although fossils are one of the primary sources for inferring population continuity, a problem with fossil material is that, even if similar morphological forms might exist in a place over time, they may not be from the same genetic lineage. There are now readily available methods to assess genetic continuity solely from DNA found in fossil material, provided the record is fairly continuous. In a From the Cover article in this issue of Molecular Ecology, Loog et al. (2020) apply some of these readily available methods to analyse mitochondrial genomes and model the demography of wolves over the last 50,000 years.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32286714</pmid><doi>10.1111/mec.15438</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-8812-8177</orcidid><orcidid>https://orcid.org/0000-0003-3537-2245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2020-05, Vol.29 (9), p.1589-1591
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_journals_2409962866
source Wiley Online Library Journals Frontfile Complete
subjects ancient DNA
Climate change
Demography
Deoxyribonucleic acid
DNA
Fossils
Genomes
genomics/proteomics
Glaciation
Glaciology
mammals
Mitochondria
Plants
Pleistocene
Pleistocene megafauna
population genetics ‐ empirical
Population studies
Vertebrates
Wolves
title Illuminating the mysteries of wolf history
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illuminating%20the%20mysteries%20of%20wolf%20history&rft.jtitle=Molecular%20ecology&rft.au=Schweizer,%20Rena%20M.&rft.date=2020-05&rft.volume=29&rft.issue=9&rft.spage=1589&rft.epage=1591&rft.pages=1589-1591&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.15438&rft_dat=%3Cproquest_cross%3E2409962866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409962866&rft_id=info:pmid/32286714&rfr_iscdi=true