Investigations on the effect of guide vane thickness and solidity on shock and unsteady flow characteristic of VNT
In this work, the influence of thickness and solidity of guide vane on the unsteady flow of a radial inflow turbine with variable nozzle has been numerically studied. Three vanes with the thickness changes from 0.3 to 0.1 and the solidity changes from 1.43 to 2.86, were chosen for this study. By inv...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical science and technology 2020, 34(6), , pp.2423-2433 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, the influence of thickness and solidity of guide vane on the unsteady flow of a radial inflow turbine with variable nozzle has been numerically studied. Three vanes with the thickness changes from 0.3 to 0.1 and the solidity changes from 1.43 to 2.86, were chosen for this study. By investigating the unsteady flow field, it is found that the vane with low thickness and high solidity (vane B) can reduce shock by 75 % compared to the vane with high thickness and low solidity (base model); meanwhile, it can also mitigate the nozzle endwall leakage flow thus improves the flow uniformity of rotor inlet. As the intensity of shock and nozzle leakage flow were mitigated, the aerodynamic loading fluctuation of rotor blade can be weakened effectively, which will lead to improved rotor blades forced response. However, at small opening, vane B shows about 0.5 % lower efficiency than the base model; at large open condition, the efficiency degradation of vane B is up to 1.4 %. Therefore, there is a trade-off between the efficiency and forced response when choosing the nozzle vane solidity and thickness. |
---|---|
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-020-0518-4 |