The Influence of Dynamic Preload on the Fatigue Endurance Limit of AMg6 Alloy

The influence of dynamic preload on the fatigue endurance limit of AMg6 alloy has been experimentally studied in a range of 10 9 loading cycles. It is established that prestraining up to 10% deformation at 10 3 s –1 rate leads to a 22% decrease in the fatigue endurance limit. A mathematical model is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technical physics letters 2020-04, Vol.46 (4), p.397-399
Hauptverfasser: Bilalov, D. A., Oborin, V. A., Naimark, O. B., Narykova, M. V., Kadomtsev, A. G., Betekhtin, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 4
container_start_page 397
container_title Technical physics letters
container_volume 46
creator Bilalov, D. A.
Oborin, V. A.
Naimark, O. B.
Narykova, M. V.
Kadomtsev, A. G.
Betekhtin, V. I.
description The influence of dynamic preload on the fatigue endurance limit of AMg6 alloy has been experimentally studied in a range of 10 9 loading cycles. It is established that prestraining up to 10% deformation at 10 3 s –1 rate leads to a 22% decrease in the fatigue endurance limit. A mathematical model is proposed that can adequately predict fatigue fracture, including that after preload.
doi_str_mv 10.1134/S1063785020040197
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409875259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409875259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b580447f890d7773bfbbe439004454d892315bb108b01a40fb0d2dd49bb2c0e93</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rk3yY5llq10KJgPS_JbrZu2WZrsnvotzdLBQ_iaQbm997MPIRuCdwTwvjDO4GcSSWAAnAgWp6hCQENWS4YOx_7nGXj_BJdxbgDAEWFnqD15tPhpa_bwfnS4a7Gj0dv9k2J34JrO1PhzuM-MU-mb7aDwwtfDcGM7KrZN_2omK23OZ61bXe8Rhe1aaO7-alT9PG02MxfstXr83I-W2UlI3mfWaGAc1krDZWUktnaWseZTqdzwSulKSPCWgLKAjEcagsVrSquraUlOM2m6O7kewjd1-BiX-y6Ifi0sqActJIiPZcocqLK0MUYXF0cQrM34VgQKMbUij-pJQ09aWJi_daFX-f_Rd-7D2uo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409875259</pqid></control><display><type>article</type><title>The Influence of Dynamic Preload on the Fatigue Endurance Limit of AMg6 Alloy</title><source>SpringerNature Journals</source><creator>Bilalov, D. A. ; Oborin, V. A. ; Naimark, O. B. ; Narykova, M. V. ; Kadomtsev, A. G. ; Betekhtin, V. I.</creator><creatorcontrib>Bilalov, D. A. ; Oborin, V. A. ; Naimark, O. B. ; Narykova, M. V. ; Kadomtsev, A. G. ; Betekhtin, V. I.</creatorcontrib><description>The influence of dynamic preload on the fatigue endurance limit of AMg6 alloy has been experimentally studied in a range of 10 9 loading cycles. It is established that prestraining up to 10% deformation at 10 3 s –1 rate leads to a 22% decrease in the fatigue endurance limit. A mathematical model is proposed that can adequately predict fatigue fracture, including that after preload.</description><identifier>ISSN: 1063-7850</identifier><identifier>EISSN: 1090-6533</identifier><identifier>DOI: 10.1134/S1063785020040197</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Crack propagation ; Fatigue failure ; Fatigue limit ; Physics ; Physics and Astronomy ; Prestressing</subject><ispartof>Technical physics letters, 2020-04, Vol.46 (4), p.397-399</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b580447f890d7773bfbbe439004454d892315bb108b01a40fb0d2dd49bb2c0e93</citedby><cites>FETCH-LOGICAL-c316t-b580447f890d7773bfbbe439004454d892315bb108b01a40fb0d2dd49bb2c0e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063785020040197$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063785020040197$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bilalov, D. A.</creatorcontrib><creatorcontrib>Oborin, V. A.</creatorcontrib><creatorcontrib>Naimark, O. B.</creatorcontrib><creatorcontrib>Narykova, M. V.</creatorcontrib><creatorcontrib>Kadomtsev, A. G.</creatorcontrib><creatorcontrib>Betekhtin, V. I.</creatorcontrib><title>The Influence of Dynamic Preload on the Fatigue Endurance Limit of AMg6 Alloy</title><title>Technical physics letters</title><addtitle>Tech. Phys. Lett</addtitle><description>The influence of dynamic preload on the fatigue endurance limit of AMg6 alloy has been experimentally studied in a range of 10 9 loading cycles. It is established that prestraining up to 10% deformation at 10 3 s –1 rate leads to a 22% decrease in the fatigue endurance limit. A mathematical model is proposed that can adequately predict fatigue fracture, including that after preload.</description><subject>Classical and Continuum Physics</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Fatigue limit</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Prestressing</subject><issn>1063-7850</issn><issn>1090-6533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rk3yY5llq10KJgPS_JbrZu2WZrsnvotzdLBQ_iaQbm997MPIRuCdwTwvjDO4GcSSWAAnAgWp6hCQENWS4YOx_7nGXj_BJdxbgDAEWFnqD15tPhpa_bwfnS4a7Gj0dv9k2J34JrO1PhzuM-MU-mb7aDwwtfDcGM7KrZN_2omK23OZ61bXe8Rhe1aaO7-alT9PG02MxfstXr83I-W2UlI3mfWaGAc1krDZWUktnaWseZTqdzwSulKSPCWgLKAjEcagsVrSquraUlOM2m6O7kewjd1-BiX-y6Ifi0sqActJIiPZcocqLK0MUYXF0cQrM34VgQKMbUij-pJQ09aWJi_daFX-f_Rd-7D2uo</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Bilalov, D. A.</creator><creator>Oborin, V. A.</creator><creator>Naimark, O. B.</creator><creator>Narykova, M. V.</creator><creator>Kadomtsev, A. G.</creator><creator>Betekhtin, V. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>The Influence of Dynamic Preload on the Fatigue Endurance Limit of AMg6 Alloy</title><author>Bilalov, D. A. ; Oborin, V. A. ; Naimark, O. B. ; Narykova, M. V. ; Kadomtsev, A. G. ; Betekhtin, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b580447f890d7773bfbbe439004454d892315bb108b01a40fb0d2dd49bb2c0e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Continuum Physics</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Fatigue limit</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Prestressing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilalov, D. A.</creatorcontrib><creatorcontrib>Oborin, V. A.</creatorcontrib><creatorcontrib>Naimark, O. B.</creatorcontrib><creatorcontrib>Narykova, M. V.</creatorcontrib><creatorcontrib>Kadomtsev, A. G.</creatorcontrib><creatorcontrib>Betekhtin, V. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilalov, D. A.</au><au>Oborin, V. A.</au><au>Naimark, O. B.</au><au>Narykova, M. V.</au><au>Kadomtsev, A. G.</au><au>Betekhtin, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Dynamic Preload on the Fatigue Endurance Limit of AMg6 Alloy</atitle><jtitle>Technical physics letters</jtitle><stitle>Tech. Phys. Lett</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>46</volume><issue>4</issue><spage>397</spage><epage>399</epage><pages>397-399</pages><issn>1063-7850</issn><eissn>1090-6533</eissn><abstract>The influence of dynamic preload on the fatigue endurance limit of AMg6 alloy has been experimentally studied in a range of 10 9 loading cycles. It is established that prestraining up to 10% deformation at 10 3 s –1 rate leads to a 22% decrease in the fatigue endurance limit. A mathematical model is proposed that can adequately predict fatigue fracture, including that after preload.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063785020040197</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7850
ispartof Technical physics letters, 2020-04, Vol.46 (4), p.397-399
issn 1063-7850
1090-6533
language eng
recordid cdi_proquest_journals_2409875259
source SpringerNature Journals
subjects Classical and Continuum Physics
Crack propagation
Fatigue failure
Fatigue limit
Physics
Physics and Astronomy
Prestressing
title The Influence of Dynamic Preload on the Fatigue Endurance Limit of AMg6 Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Dynamic%20Preload%20on%20the%20Fatigue%20Endurance%20Limit%20of%20AMg6%20Alloy&rft.jtitle=Technical%20physics%20letters&rft.au=Bilalov,%20D.%20A.&rft.date=2020-04-01&rft.volume=46&rft.issue=4&rft.spage=397&rft.epage=399&rft.pages=397-399&rft.issn=1063-7850&rft.eissn=1090-6533&rft_id=info:doi/10.1134/S1063785020040197&rft_dat=%3Cproquest_cross%3E2409875259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409875259&rft_id=info:pmid/&rfr_iscdi=true