Shapes of hyperbolic triangles and once-punctured torus groups
Let \(\Delta\) be a hyperbolic triangle with a fixed area \(\varphi\). We prove that for all but countably many \(\varphi\), generic choices of \(\Delta\) have the property that the group generated by the \(\pi\)--rotations about the midpoints of the sides of the triangle admits no nontrivial relati...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-04 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sang-hyun, Kim Koberda, Thomas Lee, Jaejeong Ohshika, Ken'ichi Tan, Ser Peow with an appendix by Xinghua Gao |
description | Let \(\Delta\) be a hyperbolic triangle with a fixed area \(\varphi\). We prove that for all but countably many \(\varphi\), generic choices of \(\Delta\) have the property that the group generated by the \(\pi\)--rotations about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast, we show for all \(\varphi\in(0,\pi)\setminus\mathbb{Q}\pi\), a dense set of triangles does afford nontrivial relations, which in the generic case map to hyperbolic translations. To establish this fact, we study the deformation space \(\mathfrak{C}_\theta\) of singular hyperbolic metrics on a torus with a single cone point of angle \(\theta=2(\pi-\varphi)\), and answer an analogous question for the holonomy map \(\rho_\xi\) of such a hyperbolic structure \(\xi\). In an appendix by X.~Gao, concrete examples of \(\theta\) and \(\xi\in\mathfrak{C}_\theta\) are given where the image of each \(\rho_\xi\) is finitely presented, non-free and torsion-free; in fact, those images will be isomorphic to the fundamental groups of closed hyperbolic 3--manifolds. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2409768138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409768138</sourcerecordid><originalsourceid>FETCH-proquest_journals_24097681383</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgWLT_EHAupElfLi6iuOteYpq-KLnx3mTw7-3gBzgdOOdsWCKVyrOmkHLHUqJZCCGrWpalStj5MWpviUPPx4-3-IJlMjzgpN2wrF67joMzNvPRmRDRdjwARuIDQvR0YNteL2TTH_fseLs-L_fMI7yjpdDOENGtqZWFONVVk6tG_Xd9AfoEOPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409768138</pqid></control><display><type>article</type><title>Shapes of hyperbolic triangles and once-punctured torus groups</title><source>Free E- Journals</source><creator>Sang-hyun, Kim ; Koberda, Thomas ; Lee, Jaejeong ; Ohshika, Ken'ichi ; Tan, Ser Peow ; with an appendix by Xinghua Gao</creator><creatorcontrib>Sang-hyun, Kim ; Koberda, Thomas ; Lee, Jaejeong ; Ohshika, Ken'ichi ; Tan, Ser Peow ; with an appendix by Xinghua Gao</creatorcontrib><description>Let \(\Delta\) be a hyperbolic triangle with a fixed area \(\varphi\). We prove that for all but countably many \(\varphi\), generic choices of \(\Delta\) have the property that the group generated by the \(\pi\)--rotations about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast, we show for all \(\varphi\in(0,\pi)\setminus\mathbb{Q}\pi\), a dense set of triangles does afford nontrivial relations, which in the generic case map to hyperbolic translations. To establish this fact, we study the deformation space \(\mathfrak{C}_\theta\) of singular hyperbolic metrics on a torus with a single cone point of angle \(\theta=2(\pi-\varphi)\), and answer an analogous question for the holonomy map \(\rho_\xi\) of such a hyperbolic structure \(\xi\). In an appendix by X.~Gao, concrete examples of \(\theta\) and \(\xi\in\mathfrak{C}_\theta\) are given where the image of each \(\rho_\xi\) is finitely presented, non-free and torsion-free; in fact, those images will be isomorphic to the fundamental groups of closed hyperbolic 3--manifolds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Toruses ; Translations ; Triangles</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sang-hyun, Kim</creatorcontrib><creatorcontrib>Koberda, Thomas</creatorcontrib><creatorcontrib>Lee, Jaejeong</creatorcontrib><creatorcontrib>Ohshika, Ken'ichi</creatorcontrib><creatorcontrib>Tan, Ser Peow</creatorcontrib><creatorcontrib>with an appendix by Xinghua Gao</creatorcontrib><title>Shapes of hyperbolic triangles and once-punctured torus groups</title><title>arXiv.org</title><description>Let \(\Delta\) be a hyperbolic triangle with a fixed area \(\varphi\). We prove that for all but countably many \(\varphi\), generic choices of \(\Delta\) have the property that the group generated by the \(\pi\)--rotations about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast, we show for all \(\varphi\in(0,\pi)\setminus\mathbb{Q}\pi\), a dense set of triangles does afford nontrivial relations, which in the generic case map to hyperbolic translations. To establish this fact, we study the deformation space \(\mathfrak{C}_\theta\) of singular hyperbolic metrics on a torus with a single cone point of angle \(\theta=2(\pi-\varphi)\), and answer an analogous question for the holonomy map \(\rho_\xi\) of such a hyperbolic structure \(\xi\). In an appendix by X.~Gao, concrete examples of \(\theta\) and \(\xi\in\mathfrak{C}_\theta\) are given where the image of each \(\rho_\xi\) is finitely presented, non-free and torsion-free; in fact, those images will be isomorphic to the fundamental groups of closed hyperbolic 3--manifolds.</description><subject>Toruses</subject><subject>Translations</subject><subject>Triangles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNirsKwjAUQIMgWLT_EHAupElfLi6iuOteYpq-KLnx3mTw7-3gBzgdOOdsWCKVyrOmkHLHUqJZCCGrWpalStj5MWpviUPPx4-3-IJlMjzgpN2wrF67joMzNvPRmRDRdjwARuIDQvR0YNteL2TTH_fseLs-L_fMI7yjpdDOENGtqZWFONVVk6tG_Xd9AfoEOPI</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>Sang-hyun, Kim</creator><creator>Koberda, Thomas</creator><creator>Lee, Jaejeong</creator><creator>Ohshika, Ken'ichi</creator><creator>Tan, Ser Peow</creator><creator>with an appendix by Xinghua Gao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210402</creationdate><title>Shapes of hyperbolic triangles and once-punctured torus groups</title><author>Sang-hyun, Kim ; Koberda, Thomas ; Lee, Jaejeong ; Ohshika, Ken'ichi ; Tan, Ser Peow ; with an appendix by Xinghua Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24097681383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Toruses</topic><topic>Translations</topic><topic>Triangles</topic><toplevel>online_resources</toplevel><creatorcontrib>Sang-hyun, Kim</creatorcontrib><creatorcontrib>Koberda, Thomas</creatorcontrib><creatorcontrib>Lee, Jaejeong</creatorcontrib><creatorcontrib>Ohshika, Ken'ichi</creatorcontrib><creatorcontrib>Tan, Ser Peow</creatorcontrib><creatorcontrib>with an appendix by Xinghua Gao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sang-hyun, Kim</au><au>Koberda, Thomas</au><au>Lee, Jaejeong</au><au>Ohshika, Ken'ichi</au><au>Tan, Ser Peow</au><au>with an appendix by Xinghua Gao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Shapes of hyperbolic triangles and once-punctured torus groups</atitle><jtitle>arXiv.org</jtitle><date>2021-04-02</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Let \(\Delta\) be a hyperbolic triangle with a fixed area \(\varphi\). We prove that for all but countably many \(\varphi\), generic choices of \(\Delta\) have the property that the group generated by the \(\pi\)--rotations about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast, we show for all \(\varphi\in(0,\pi)\setminus\mathbb{Q}\pi\), a dense set of triangles does afford nontrivial relations, which in the generic case map to hyperbolic translations. To establish this fact, we study the deformation space \(\mathfrak{C}_\theta\) of singular hyperbolic metrics on a torus with a single cone point of angle \(\theta=2(\pi-\varphi)\), and answer an analogous question for the holonomy map \(\rho_\xi\) of such a hyperbolic structure \(\xi\). In an appendix by X.~Gao, concrete examples of \(\theta\) and \(\xi\in\mathfrak{C}_\theta\) are given where the image of each \(\rho_\xi\) is finitely presented, non-free and torsion-free; in fact, those images will be isomorphic to the fundamental groups of closed hyperbolic 3--manifolds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2409768138 |
source | Free E- Journals |
subjects | Toruses Translations Triangles |
title | Shapes of hyperbolic triangles and once-punctured torus groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Shapes%20of%20hyperbolic%20triangles%20and%20once-punctured%20torus%20groups&rft.jtitle=arXiv.org&rft.au=Sang-hyun,%20Kim&rft.date=2021-04-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2409768138%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409768138&rft_id=info:pmid/&rfr_iscdi=true |