Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method

This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2020-06, Vol.846, p.169-174
Hauptverfasser: Suharno, Bambang, Ovilia, Annisa, Supriadi, Sugeng, Ilmaniar, Nurul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue
container_start_page 169
container_title Key engineering materials
container_volume 846
creator Suharno, Bambang
Ovilia, Annisa
Supriadi, Sugeng
Ilmaniar, Nurul
description This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on bulk metal and its ability to control thin-film stoichiometry. Samples were prepared using the series of following steps which comprised of metal injection molding, binder elimination with solvent and thermal debinding, sintering in vacuum and argon atmosphere, electropolishing, and magnetron sputtering PVD coatings as the final stage. Negative bias, sputtering power, and partial pressure on vacuum chamber were set as the constant parameters. The atmosphere inside the PVD chamber was controlled using oxygen and argon gases. XRD and SEM observations were carried out to obtain the information on the phase and morphology of the films. Rutile and anatase crystalline structures with 2,27 nm and 9,78 nm crystal size were measured in as-deposited PVD TiO2 respectively. The deposition films were achieved in the range of 3 μm-8 μm.
doi_str_mv 10.4028/www.scientific.net/KEM.846.169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409735371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409735371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2719-540b5de8fd3808403e446f25d944f0bc8b6ea577e01c69d266116c1a094d52aa3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhhdR8PM_BARvu02y2ezmIn5WRUsFq9eQZmdt6japSaT4S_y7plbw6mVmGOZ95vBk2QnBBcO0GaxWqyJoAzaazujCQhzcX4-KhvGCcLGV7RHOaS5qUW2nGZMyFw3lu9l-CHOMS9KQai_7Gjq_UNE4i1yHJmZM0WRmLBqafoHS8jzRp0pH8Eb1aAQx1Ts7B_0TGbm-NfYVPUVlbA8hpAmgR2MfZ651KavRhVf6DSIidc7Q4y16DuvE4-wzGJ1gL2rpPLqCpQtmw4R19jDb6VQf4Oi3H2TPw-vJ5W3-ML65uzx_yDWticgrhqdVC03Xlg1uGC6BMd7RqhWMdXiqmykHVdU1YKK5aCnnhHBNFBasrahS5UF2vOEuvXv_gBDl3H14m15KyrCoy6qsSbo63Vxp70Lw0MmlNwvlPyXBci1DJhnyT4ZMMmSSIZMMmWQkwNkGEL2yIYKe_f35J-Ib1tycCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409735371</pqid></control><display><type>article</type><title>Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method</title><source>Scientific.net Journals</source><creator>Suharno, Bambang ; Ovilia, Annisa ; Supriadi, Sugeng ; Ilmaniar, Nurul</creator><creatorcontrib>Suharno, Bambang ; Ovilia, Annisa ; Supriadi, Sugeng ; Ilmaniar, Nurul</creatorcontrib><description>This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on bulk metal and its ability to control thin-film stoichiometry. Samples were prepared using the series of following steps which comprised of metal injection molding, binder elimination with solvent and thermal debinding, sintering in vacuum and argon atmosphere, electropolishing, and magnetron sputtering PVD coatings as the final stage. Negative bias, sputtering power, and partial pressure on vacuum chamber were set as the constant parameters. The atmosphere inside the PVD chamber was controlled using oxygen and argon gases. XRD and SEM observations were carried out to obtain the information on the phase and morphology of the films. Rutile and anatase crystalline structures with 2,27 nm and 9,78 nm crystal size were measured in as-deposited PVD TiO2 respectively. The deposition films were achieved in the range of 3 μm-8 μm.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.846.169</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Anatase ; Argon ; Binder removal ; Brackets ; Crystal structure ; Electropolishing ; Injection molding ; Magnetron sputtering ; Martensitic stainless steels ; Morphology ; Orthodontics ; Partial pressure ; Physical vapor deposition ; Precipitation hardening steels ; Stability ; Stoichiometry ; Thin films ; Titanium dioxide ; Vacuum chambers</subject><ispartof>Key engineering materials, 2020-06, Vol.846, p.169-174</ispartof><rights>2020 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2719-540b5de8fd3808403e446f25d944f0bc8b6ea577e01c69d266116c1a094d52aa3</citedby><cites>FETCH-LOGICAL-c2719-540b5de8fd3808403e446f25d944f0bc8b6ea577e01c69d266116c1a094d52aa3</cites><orcidid>0000-0001-8153-4036 ; 0000-0002-9029-2726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/5969?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Suharno, Bambang</creatorcontrib><creatorcontrib>Ovilia, Annisa</creatorcontrib><creatorcontrib>Supriadi, Sugeng</creatorcontrib><creatorcontrib>Ilmaniar, Nurul</creatorcontrib><title>Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method</title><title>Key engineering materials</title><description>This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on bulk metal and its ability to control thin-film stoichiometry. Samples were prepared using the series of following steps which comprised of metal injection molding, binder elimination with solvent and thermal debinding, sintering in vacuum and argon atmosphere, electropolishing, and magnetron sputtering PVD coatings as the final stage. Negative bias, sputtering power, and partial pressure on vacuum chamber were set as the constant parameters. The atmosphere inside the PVD chamber was controlled using oxygen and argon gases. XRD and SEM observations were carried out to obtain the information on the phase and morphology of the films. Rutile and anatase crystalline structures with 2,27 nm and 9,78 nm crystal size were measured in as-deposited PVD TiO2 respectively. The deposition films were achieved in the range of 3 μm-8 μm.</description><subject>Anatase</subject><subject>Argon</subject><subject>Binder removal</subject><subject>Brackets</subject><subject>Crystal structure</subject><subject>Electropolishing</subject><subject>Injection molding</subject><subject>Magnetron sputtering</subject><subject>Martensitic stainless steels</subject><subject>Morphology</subject><subject>Orthodontics</subject><subject>Partial pressure</subject><subject>Physical vapor deposition</subject><subject>Precipitation hardening steels</subject><subject>Stability</subject><subject>Stoichiometry</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><subject>Vacuum chambers</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU1LAzEQhhdR8PM_BARvu02y2ezmIn5WRUsFq9eQZmdt6japSaT4S_y7plbw6mVmGOZ95vBk2QnBBcO0GaxWqyJoAzaazujCQhzcX4-KhvGCcLGV7RHOaS5qUW2nGZMyFw3lu9l-CHOMS9KQai_7Gjq_UNE4i1yHJmZM0WRmLBqafoHS8jzRp0pH8Eb1aAQx1Ts7B_0TGbm-NfYVPUVlbA8hpAmgR2MfZ651KavRhVf6DSIidc7Q4y16DuvE4-wzGJ1gL2rpPLqCpQtmw4R19jDb6VQf4Oi3H2TPw-vJ5W3-ML65uzx_yDWticgrhqdVC03Xlg1uGC6BMd7RqhWMdXiqmykHVdU1YKK5aCnnhHBNFBasrahS5UF2vOEuvXv_gBDl3H14m15KyrCoy6qsSbo63Vxp70Lw0MmlNwvlPyXBci1DJhnyT4ZMMmSSIZMMmWQkwNkGEL2yIYKe_f35J-Ib1tycCQ</recordid><startdate>20200603</startdate><enddate>20200603</enddate><creator>Suharno, Bambang</creator><creator>Ovilia, Annisa</creator><creator>Supriadi, Sugeng</creator><creator>Ilmaniar, Nurul</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8153-4036</orcidid><orcidid>https://orcid.org/0000-0002-9029-2726</orcidid></search><sort><creationdate>20200603</creationdate><title>Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method</title><author>Suharno, Bambang ; Ovilia, Annisa ; Supriadi, Sugeng ; Ilmaniar, Nurul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2719-540b5de8fd3808403e446f25d944f0bc8b6ea577e01c69d266116c1a094d52aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anatase</topic><topic>Argon</topic><topic>Binder removal</topic><topic>Brackets</topic><topic>Crystal structure</topic><topic>Electropolishing</topic><topic>Injection molding</topic><topic>Magnetron sputtering</topic><topic>Martensitic stainless steels</topic><topic>Morphology</topic><topic>Orthodontics</topic><topic>Partial pressure</topic><topic>Physical vapor deposition</topic><topic>Precipitation hardening steels</topic><topic>Stability</topic><topic>Stoichiometry</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suharno, Bambang</creatorcontrib><creatorcontrib>Ovilia, Annisa</creatorcontrib><creatorcontrib>Supriadi, Sugeng</creatorcontrib><creatorcontrib>Ilmaniar, Nurul</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suharno, Bambang</au><au>Ovilia, Annisa</au><au>Supriadi, Sugeng</au><au>Ilmaniar, Nurul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method</atitle><jtitle>Key engineering materials</jtitle><date>2020-06-03</date><risdate>2020</risdate><volume>846</volume><spage>169</spage><epage>174</epage><pages>169-174</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on bulk metal and its ability to control thin-film stoichiometry. Samples were prepared using the series of following steps which comprised of metal injection molding, binder elimination with solvent and thermal debinding, sintering in vacuum and argon atmosphere, electropolishing, and magnetron sputtering PVD coatings as the final stage. Negative bias, sputtering power, and partial pressure on vacuum chamber were set as the constant parameters. The atmosphere inside the PVD chamber was controlled using oxygen and argon gases. XRD and SEM observations were carried out to obtain the information on the phase and morphology of the films. Rutile and anatase crystalline structures with 2,27 nm and 9,78 nm crystal size were measured in as-deposited PVD TiO2 respectively. The deposition films were achieved in the range of 3 μm-8 μm.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.846.169</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8153-4036</orcidid><orcidid>https://orcid.org/0000-0002-9029-2726</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2020-06, Vol.846, p.169-174
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_journals_2409735371
source Scientific.net Journals
subjects Anatase
Argon
Binder removal
Brackets
Crystal structure
Electropolishing
Injection molding
Magnetron sputtering
Martensitic stainless steels
Morphology
Orthodontics
Partial pressure
Physical vapor deposition
Precipitation hardening steels
Stability
Stoichiometry
Thin films
Titanium dioxide
Vacuum chambers
title Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20TiO2%20Thin%20Film%20on%20Antibacterial%20Metal%20Injection%20Molding%20Stainless%20Steel%20Orthodontic%20Bracket%2017-4%20PH%20Using%20Physical%20Vapor%20Deposition%20Method&rft.jtitle=Key%20engineering%20materials&rft.au=Suharno,%20Bambang&rft.date=2020-06-03&rft.volume=846&rft.spage=169&rft.epage=174&rft.pages=169-174&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.846.169&rft_dat=%3Cproquest_cross%3E2409735371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409735371&rft_id=info:pmid/&rfr_iscdi=true