Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method
This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2020-06, Vol.846, p.169-174 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | |
container_start_page | 169 |
container_title | Key engineering materials |
container_volume | 846 |
creator | Suharno, Bambang Ovilia, Annisa Supriadi, Sugeng Ilmaniar, Nurul |
description | This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on bulk metal and its ability to control thin-film stoichiometry. Samples were prepared using the series of following steps which comprised of metal injection molding, binder elimination with solvent and thermal debinding, sintering in vacuum and argon atmosphere, electropolishing, and magnetron sputtering PVD coatings as the final stage. Negative bias, sputtering power, and partial pressure on vacuum chamber were set as the constant parameters. The atmosphere inside the PVD chamber was controlled using oxygen and argon gases. XRD and SEM observations were carried out to obtain the information on the phase and morphology of the films. Rutile and anatase crystalline structures with 2,27 nm and 9,78 nm crystal size were measured in as-deposited PVD TiO2 respectively. The deposition films were achieved in the range of 3 μm-8 μm. |
doi_str_mv | 10.4028/www.scientific.net/KEM.846.169 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409735371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409735371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2719-540b5de8fd3808403e446f25d944f0bc8b6ea577e01c69d266116c1a094d52aa3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhhdR8PM_BARvu02y2ezmIn5WRUsFq9eQZmdt6japSaT4S_y7plbw6mVmGOZ95vBk2QnBBcO0GaxWqyJoAzaazujCQhzcX4-KhvGCcLGV7RHOaS5qUW2nGZMyFw3lu9l-CHOMS9KQai_7Gjq_UNE4i1yHJmZM0WRmLBqafoHS8jzRp0pH8Eb1aAQx1Ts7B_0TGbm-NfYVPUVlbA8hpAmgR2MfZ651KavRhVf6DSIidc7Q4y16DuvE4-wzGJ1gL2rpPLqCpQtmw4R19jDb6VQf4Oi3H2TPw-vJ5W3-ML65uzx_yDWticgrhqdVC03Xlg1uGC6BMd7RqhWMdXiqmykHVdU1YKK5aCnnhHBNFBasrahS5UF2vOEuvXv_gBDl3H14m15KyrCoy6qsSbo63Vxp70Lw0MmlNwvlPyXBci1DJhnyT4ZMMmSSIZMMmWQkwNkGEL2yIYKe_f35J-Ib1tycCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409735371</pqid></control><display><type>article</type><title>Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method</title><source>Scientific.net Journals</source><creator>Suharno, Bambang ; Ovilia, Annisa ; Supriadi, Sugeng ; Ilmaniar, Nurul</creator><creatorcontrib>Suharno, Bambang ; Ovilia, Annisa ; Supriadi, Sugeng ; Ilmaniar, Nurul</creatorcontrib><description>This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on bulk metal and its ability to control thin-film stoichiometry. Samples were prepared using the series of following steps which comprised of metal injection molding, binder elimination with solvent and thermal debinding, sintering in vacuum and argon atmosphere, electropolishing, and magnetron sputtering PVD coatings as the final stage. Negative bias, sputtering power, and partial pressure on vacuum chamber were set as the constant parameters. The atmosphere inside the PVD chamber was controlled using oxygen and argon gases. XRD and SEM observations were carried out to obtain the information on the phase and morphology of the films. Rutile and anatase crystalline structures with 2,27 nm and 9,78 nm crystal size were measured in as-deposited PVD TiO2 respectively. The deposition films were achieved in the range of 3 μm-8 μm.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.846.169</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Anatase ; Argon ; Binder removal ; Brackets ; Crystal structure ; Electropolishing ; Injection molding ; Magnetron sputtering ; Martensitic stainless steels ; Morphology ; Orthodontics ; Partial pressure ; Physical vapor deposition ; Precipitation hardening steels ; Stability ; Stoichiometry ; Thin films ; Titanium dioxide ; Vacuum chambers</subject><ispartof>Key engineering materials, 2020-06, Vol.846, p.169-174</ispartof><rights>2020 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2719-540b5de8fd3808403e446f25d944f0bc8b6ea577e01c69d266116c1a094d52aa3</citedby><cites>FETCH-LOGICAL-c2719-540b5de8fd3808403e446f25d944f0bc8b6ea577e01c69d266116c1a094d52aa3</cites><orcidid>0000-0001-8153-4036 ; 0000-0002-9029-2726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/5969?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Suharno, Bambang</creatorcontrib><creatorcontrib>Ovilia, Annisa</creatorcontrib><creatorcontrib>Supriadi, Sugeng</creatorcontrib><creatorcontrib>Ilmaniar, Nurul</creatorcontrib><title>Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method</title><title>Key engineering materials</title><description>This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on bulk metal and its ability to control thin-film stoichiometry. Samples were prepared using the series of following steps which comprised of metal injection molding, binder elimination with solvent and thermal debinding, sintering in vacuum and argon atmosphere, electropolishing, and magnetron sputtering PVD coatings as the final stage. Negative bias, sputtering power, and partial pressure on vacuum chamber were set as the constant parameters. The atmosphere inside the PVD chamber was controlled using oxygen and argon gases. XRD and SEM observations were carried out to obtain the information on the phase and morphology of the films. Rutile and anatase crystalline structures with 2,27 nm and 9,78 nm crystal size were measured in as-deposited PVD TiO2 respectively. The deposition films were achieved in the range of 3 μm-8 μm.</description><subject>Anatase</subject><subject>Argon</subject><subject>Binder removal</subject><subject>Brackets</subject><subject>Crystal structure</subject><subject>Electropolishing</subject><subject>Injection molding</subject><subject>Magnetron sputtering</subject><subject>Martensitic stainless steels</subject><subject>Morphology</subject><subject>Orthodontics</subject><subject>Partial pressure</subject><subject>Physical vapor deposition</subject><subject>Precipitation hardening steels</subject><subject>Stability</subject><subject>Stoichiometry</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><subject>Vacuum chambers</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU1LAzEQhhdR8PM_BARvu02y2ezmIn5WRUsFq9eQZmdt6japSaT4S_y7plbw6mVmGOZ95vBk2QnBBcO0GaxWqyJoAzaazujCQhzcX4-KhvGCcLGV7RHOaS5qUW2nGZMyFw3lu9l-CHOMS9KQai_7Gjq_UNE4i1yHJmZM0WRmLBqafoHS8jzRp0pH8Eb1aAQx1Ts7B_0TGbm-NfYVPUVlbA8hpAmgR2MfZ651KavRhVf6DSIidc7Q4y16DuvE4-wzGJ1gL2rpPLqCpQtmw4R19jDb6VQf4Oi3H2TPw-vJ5W3-ML65uzx_yDWticgrhqdVC03Xlg1uGC6BMd7RqhWMdXiqmykHVdU1YKK5aCnnhHBNFBasrahS5UF2vOEuvXv_gBDl3H14m15KyrCoy6qsSbo63Vxp70Lw0MmlNwvlPyXBci1DJhnyT4ZMMmSSIZMMmWQkwNkGEL2yIYKe_f35J-Ib1tycCQ</recordid><startdate>20200603</startdate><enddate>20200603</enddate><creator>Suharno, Bambang</creator><creator>Ovilia, Annisa</creator><creator>Supriadi, Sugeng</creator><creator>Ilmaniar, Nurul</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8153-4036</orcidid><orcidid>https://orcid.org/0000-0002-9029-2726</orcidid></search><sort><creationdate>20200603</creationdate><title>Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method</title><author>Suharno, Bambang ; Ovilia, Annisa ; Supriadi, Sugeng ; Ilmaniar, Nurul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2719-540b5de8fd3808403e446f25d944f0bc8b6ea577e01c69d266116c1a094d52aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anatase</topic><topic>Argon</topic><topic>Binder removal</topic><topic>Brackets</topic><topic>Crystal structure</topic><topic>Electropolishing</topic><topic>Injection molding</topic><topic>Magnetron sputtering</topic><topic>Martensitic stainless steels</topic><topic>Morphology</topic><topic>Orthodontics</topic><topic>Partial pressure</topic><topic>Physical vapor deposition</topic><topic>Precipitation hardening steels</topic><topic>Stability</topic><topic>Stoichiometry</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suharno, Bambang</creatorcontrib><creatorcontrib>Ovilia, Annisa</creatorcontrib><creatorcontrib>Supriadi, Sugeng</creatorcontrib><creatorcontrib>Ilmaniar, Nurul</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suharno, Bambang</au><au>Ovilia, Annisa</au><au>Supriadi, Sugeng</au><au>Ilmaniar, Nurul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method</atitle><jtitle>Key engineering materials</jtitle><date>2020-06-03</date><risdate>2020</risdate><volume>846</volume><spage>169</spage><epage>174</epage><pages>169-174</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on bulk metal and its ability to control thin-film stoichiometry. Samples were prepared using the series of following steps which comprised of metal injection molding, binder elimination with solvent and thermal debinding, sintering in vacuum and argon atmosphere, electropolishing, and magnetron sputtering PVD coatings as the final stage. Negative bias, sputtering power, and partial pressure on vacuum chamber were set as the constant parameters. The atmosphere inside the PVD chamber was controlled using oxygen and argon gases. XRD and SEM observations were carried out to obtain the information on the phase and morphology of the films. Rutile and anatase crystalline structures with 2,27 nm and 9,78 nm crystal size were measured in as-deposited PVD TiO2 respectively. The deposition films were achieved in the range of 3 μm-8 μm.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.846.169</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8153-4036</orcidid><orcidid>https://orcid.org/0000-0002-9029-2726</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key engineering materials, 2020-06, Vol.846, p.169-174 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_journals_2409735371 |
source | Scientific.net Journals |
subjects | Anatase Argon Binder removal Brackets Crystal structure Electropolishing Injection molding Magnetron sputtering Martensitic stainless steels Morphology Orthodontics Partial pressure Physical vapor deposition Precipitation hardening steels Stability Stoichiometry Thin films Titanium dioxide Vacuum chambers |
title | Formation of TiO2 Thin Film on Antibacterial Metal Injection Molding Stainless Steel Orthodontic Bracket 17-4 PH Using Physical Vapor Deposition Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20TiO2%20Thin%20Film%20on%20Antibacterial%20Metal%20Injection%20Molding%20Stainless%20Steel%20Orthodontic%20Bracket%2017-4%20PH%20Using%20Physical%20Vapor%20Deposition%20Method&rft.jtitle=Key%20engineering%20materials&rft.au=Suharno,%20Bambang&rft.date=2020-06-03&rft.volume=846&rft.spage=169&rft.epage=174&rft.pages=169-174&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.846.169&rft_dat=%3Cproquest_cross%3E2409735371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409735371&rft_id=info:pmid/&rfr_iscdi=true |