Flapping wing energy harvesting: aerodynamic aspects
Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices...
Gespeichert in:
Veröffentlicht in: | CEAS aeronautical journal 2020-06, Vol.11 (2), p.379-389 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | 2 |
container_start_page | 379 |
container_title | CEAS aeronautical journal |
container_volume | 11 |
creator | Geissler, W. |
description | Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices (LEV’s). Thrust production means that energy is transferred from the flapping system into the fluid. In a similar way it can be achieved that energy flows from the fluid into the flapping system, i.e. fluid energy may be harvested. Responsible for the direction of energy flow is the ratio of pitching amplitude versus amplitude of the induced incidence of the plunging motion. If this ratio is smaller than unity thrust energy is produced; if it is larger than unity energy is transferred into the flapping system. In the present paper, emphasis is placed on the detailed study of the aerodynamic effects and on some ideas of optimization of energy harvesting of a flapping system. It will be shown that similar to the thrust production mode also in the energy harvesting mode, the influence of LEV’s is of major concern. The control of these vortices by airfoil deformation is shown to be beneficial for optimizing the efficiency of energy harvesting. |
doi_str_mv | 10.1007/s13272-019-00394-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409676241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409676241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2341-653c2641be014e99cb82078d1d2da2231b42b998f4c6872d616c67a5eb9a7c6a3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEtPYC3CqxDlgO2nScEMTA6RJXOAcpWk2Nm1tSTbQ3p6MIrjhg21Z_29bH2OXCNcIoG8SCtLEAQ0HEEZyPGEjrJThZWng9Lev6JxNUlpDDgVClnLE5Gzj-n7VLovPYwptiMtD8ebiR0i7PLktXIhdc2jdduULl_rgd-mCnS3cJoXJTx2z19n9y_SRz58fnqZ3c-5JSOSqFJ6UxDoAymCMrysCXTXYUOOIBNaSamOqhfSq0tQoVF5pV4baOO2VE2N2NeztY_e-zw_ZdbePbT5pSYJRWpHErKJB5WOXUgwL28fV1sWDRbBHQHYAZDMg-w3IHk1iMKUsbpch_q3-x_UFmz1m1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409676241</pqid></control><display><type>article</type><title>Flapping wing energy harvesting: aerodynamic aspects</title><source>SpringerLink Journals - AutoHoldings</source><creator>Geissler, W.</creator><creatorcontrib>Geissler, W.</creatorcontrib><description>Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices (LEV’s). Thrust production means that energy is transferred from the flapping system into the fluid. In a similar way it can be achieved that energy flows from the fluid into the flapping system, i.e. fluid energy may be harvested. Responsible for the direction of energy flow is the ratio of pitching amplitude versus amplitude of the induced incidence of the plunging motion. If this ratio is smaller than unity thrust energy is produced; if it is larger than unity energy is transferred into the flapping system. In the present paper, emphasis is placed on the detailed study of the aerodynamic effects and on some ideas of optimization of energy harvesting of a flapping system. It will be shown that similar to the thrust production mode also in the energy harvesting mode, the influence of LEV’s is of major concern. The control of these vortices by airfoil deformation is shown to be beneficial for optimizing the efficiency of energy harvesting.</description><identifier>ISSN: 1869-5582</identifier><identifier>EISSN: 1869-5590</identifier><identifier>DOI: 10.1007/s13272-019-00394-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aerodynamic forces ; Aerodynamics ; Aerospace Technology and Astronautics ; Amplitudes ; Energy ; Energy flow ; Energy harvesting ; Engineering ; Flapping wings ; Fluid dynamics ; Fluid flow ; Insects ; Optimization ; Original Paper ; Thrust ; Unity ; Vortices</subject><ispartof>CEAS aeronautical journal, 2020-06, Vol.11 (2), p.379-389</ispartof><rights>Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019</rights><rights>Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2341-653c2641be014e99cb82078d1d2da2231b42b998f4c6872d616c67a5eb9a7c6a3</citedby><cites>FETCH-LOGICAL-c2341-653c2641be014e99cb82078d1d2da2231b42b998f4c6872d616c67a5eb9a7c6a3</cites><orcidid>0000-0002-3462-1070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13272-019-00394-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13272-019-00394-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Geissler, W.</creatorcontrib><title>Flapping wing energy harvesting: aerodynamic aspects</title><title>CEAS aeronautical journal</title><addtitle>CEAS Aeronaut J</addtitle><description>Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices (LEV’s). Thrust production means that energy is transferred from the flapping system into the fluid. In a similar way it can be achieved that energy flows from the fluid into the flapping system, i.e. fluid energy may be harvested. Responsible for the direction of energy flow is the ratio of pitching amplitude versus amplitude of the induced incidence of the plunging motion. If this ratio is smaller than unity thrust energy is produced; if it is larger than unity energy is transferred into the flapping system. In the present paper, emphasis is placed on the detailed study of the aerodynamic effects and on some ideas of optimization of energy harvesting of a flapping system. It will be shown that similar to the thrust production mode also in the energy harvesting mode, the influence of LEV’s is of major concern. The control of these vortices by airfoil deformation is shown to be beneficial for optimizing the efficiency of energy harvesting.</description><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Aerospace Technology and Astronautics</subject><subject>Amplitudes</subject><subject>Energy</subject><subject>Energy flow</subject><subject>Energy harvesting</subject><subject>Engineering</subject><subject>Flapping wings</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Insects</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Thrust</subject><subject>Unity</subject><subject>Vortices</subject><issn>1869-5582</issn><issn>1869-5590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEtPYC3CqxDlgO2nScEMTA6RJXOAcpWk2Nm1tSTbQ3p6MIrjhg21Z_29bH2OXCNcIoG8SCtLEAQ0HEEZyPGEjrJThZWng9Lev6JxNUlpDDgVClnLE5Gzj-n7VLovPYwptiMtD8ebiR0i7PLktXIhdc2jdduULl_rgd-mCnS3cJoXJTx2z19n9y_SRz58fnqZ3c-5JSOSqFJ6UxDoAymCMrysCXTXYUOOIBNaSamOqhfSq0tQoVF5pV4baOO2VE2N2NeztY_e-zw_ZdbePbT5pSYJRWpHErKJB5WOXUgwL28fV1sWDRbBHQHYAZDMg-w3IHk1iMKUsbpch_q3-x_UFmz1m1w</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Geissler, W.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3462-1070</orcidid></search><sort><creationdate>20200601</creationdate><title>Flapping wing energy harvesting: aerodynamic aspects</title><author>Geissler, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2341-653c2641be014e99cb82078d1d2da2231b42b998f4c6872d616c67a5eb9a7c6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Aerospace Technology and Astronautics</topic><topic>Amplitudes</topic><topic>Energy</topic><topic>Energy flow</topic><topic>Energy harvesting</topic><topic>Engineering</topic><topic>Flapping wings</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Insects</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Thrust</topic><topic>Unity</topic><topic>Vortices</topic><toplevel>online_resources</toplevel><creatorcontrib>Geissler, W.</creatorcontrib><collection>CrossRef</collection><jtitle>CEAS aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geissler, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flapping wing energy harvesting: aerodynamic aspects</atitle><jtitle>CEAS aeronautical journal</jtitle><stitle>CEAS Aeronaut J</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><spage>379</spage><epage>389</epage><pages>379-389</pages><issn>1869-5582</issn><eissn>1869-5590</eissn><abstract>Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices (LEV’s). Thrust production means that energy is transferred from the flapping system into the fluid. In a similar way it can be achieved that energy flows from the fluid into the flapping system, i.e. fluid energy may be harvested. Responsible for the direction of energy flow is the ratio of pitching amplitude versus amplitude of the induced incidence of the plunging motion. If this ratio is smaller than unity thrust energy is produced; if it is larger than unity energy is transferred into the flapping system. In the present paper, emphasis is placed on the detailed study of the aerodynamic effects and on some ideas of optimization of energy harvesting of a flapping system. It will be shown that similar to the thrust production mode also in the energy harvesting mode, the influence of LEV’s is of major concern. The control of these vortices by airfoil deformation is shown to be beneficial for optimizing the efficiency of energy harvesting.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13272-019-00394-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3462-1070</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-5582 |
ispartof | CEAS aeronautical journal, 2020-06, Vol.11 (2), p.379-389 |
issn | 1869-5582 1869-5590 |
language | eng |
recordid | cdi_proquest_journals_2409676241 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aerodynamic forces Aerodynamics Aerospace Technology and Astronautics Amplitudes Energy Energy flow Energy harvesting Engineering Flapping wings Fluid dynamics Fluid flow Insects Optimization Original Paper Thrust Unity Vortices |
title | Flapping wing energy harvesting: aerodynamic aspects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flapping%20wing%20energy%20harvesting:%20aerodynamic%20aspects&rft.jtitle=CEAS%20aeronautical%20journal&rft.au=Geissler,%20W.&rft.date=2020-06-01&rft.volume=11&rft.issue=2&rft.spage=379&rft.epage=389&rft.pages=379-389&rft.issn=1869-5582&rft.eissn=1869-5590&rft_id=info:doi/10.1007/s13272-019-00394-1&rft_dat=%3Cproquest_cross%3E2409676241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409676241&rft_id=info:pmid/&rfr_iscdi=true |