Flapping wing energy harvesting: aerodynamic aspects

Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CEAS aeronautical journal 2020-06, Vol.11 (2), p.379-389
1. Verfasser: Geissler, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 2
container_start_page 379
container_title CEAS aeronautical journal
container_volume 11
creator Geissler, W.
description Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices (LEV’s). Thrust production means that energy is transferred from the flapping system into the fluid. In a similar way it can be achieved that energy flows from the fluid into the flapping system, i.e. fluid energy may be harvested. Responsible for the direction of energy flow is the ratio of pitching amplitude versus amplitude of the induced incidence of the plunging motion. If this ratio is smaller than unity thrust energy is produced; if it is larger than unity energy is transferred into the flapping system. In the present paper, emphasis is placed on the detailed study of the aerodynamic effects and on some ideas of optimization of energy harvesting of a flapping system. It will be shown that similar to the thrust production mode also in the energy harvesting mode, the influence of LEV’s is of major concern. The control of these vortices by airfoil deformation is shown to be beneficial for optimizing the efficiency of energy harvesting.
doi_str_mv 10.1007/s13272-019-00394-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409676241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409676241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2341-653c2641be014e99cb82078d1d2da2231b42b998f4c6872d616c67a5eb9a7c6a3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEtPYC3CqxDlgO2nScEMTA6RJXOAcpWk2Nm1tSTbQ3p6MIrjhg21Z_29bH2OXCNcIoG8SCtLEAQ0HEEZyPGEjrJThZWng9Lev6JxNUlpDDgVClnLE5Gzj-n7VLovPYwptiMtD8ebiR0i7PLktXIhdc2jdduULl_rgd-mCnS3cJoXJTx2z19n9y_SRz58fnqZ3c-5JSOSqFJ6UxDoAymCMrysCXTXYUOOIBNaSamOqhfSq0tQoVF5pV4baOO2VE2N2NeztY_e-zw_ZdbePbT5pSYJRWpHErKJB5WOXUgwL28fV1sWDRbBHQHYAZDMg-w3IHk1iMKUsbpch_q3-x_UFmz1m1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409676241</pqid></control><display><type>article</type><title>Flapping wing energy harvesting: aerodynamic aspects</title><source>SpringerLink Journals - AutoHoldings</source><creator>Geissler, W.</creator><creatorcontrib>Geissler, W.</creatorcontrib><description>Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices (LEV’s). Thrust production means that energy is transferred from the flapping system into the fluid. In a similar way it can be achieved that energy flows from the fluid into the flapping system, i.e. fluid energy may be harvested. Responsible for the direction of energy flow is the ratio of pitching amplitude versus amplitude of the induced incidence of the plunging motion. If this ratio is smaller than unity thrust energy is produced; if it is larger than unity energy is transferred into the flapping system. In the present paper, emphasis is placed on the detailed study of the aerodynamic effects and on some ideas of optimization of energy harvesting of a flapping system. It will be shown that similar to the thrust production mode also in the energy harvesting mode, the influence of LEV’s is of major concern. The control of these vortices by airfoil deformation is shown to be beneficial for optimizing the efficiency of energy harvesting.</description><identifier>ISSN: 1869-5582</identifier><identifier>EISSN: 1869-5590</identifier><identifier>DOI: 10.1007/s13272-019-00394-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aerodynamic forces ; Aerodynamics ; Aerospace Technology and Astronautics ; Amplitudes ; Energy ; Energy flow ; Energy harvesting ; Engineering ; Flapping wings ; Fluid dynamics ; Fluid flow ; Insects ; Optimization ; Original Paper ; Thrust ; Unity ; Vortices</subject><ispartof>CEAS aeronautical journal, 2020-06, Vol.11 (2), p.379-389</ispartof><rights>Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019</rights><rights>Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2341-653c2641be014e99cb82078d1d2da2231b42b998f4c6872d616c67a5eb9a7c6a3</citedby><cites>FETCH-LOGICAL-c2341-653c2641be014e99cb82078d1d2da2231b42b998f4c6872d616c67a5eb9a7c6a3</cites><orcidid>0000-0002-3462-1070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13272-019-00394-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13272-019-00394-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Geissler, W.</creatorcontrib><title>Flapping wing energy harvesting: aerodynamic aspects</title><title>CEAS aeronautical journal</title><addtitle>CEAS Aeronaut J</addtitle><description>Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices (LEV’s). Thrust production means that energy is transferred from the flapping system into the fluid. In a similar way it can be achieved that energy flows from the fluid into the flapping system, i.e. fluid energy may be harvested. Responsible for the direction of energy flow is the ratio of pitching amplitude versus amplitude of the induced incidence of the plunging motion. If this ratio is smaller than unity thrust energy is produced; if it is larger than unity energy is transferred into the flapping system. In the present paper, emphasis is placed on the detailed study of the aerodynamic effects and on some ideas of optimization of energy harvesting of a flapping system. It will be shown that similar to the thrust production mode also in the energy harvesting mode, the influence of LEV’s is of major concern. The control of these vortices by airfoil deformation is shown to be beneficial for optimizing the efficiency of energy harvesting.</description><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Aerospace Technology and Astronautics</subject><subject>Amplitudes</subject><subject>Energy</subject><subject>Energy flow</subject><subject>Energy harvesting</subject><subject>Engineering</subject><subject>Flapping wings</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Insects</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Thrust</subject><subject>Unity</subject><subject>Vortices</subject><issn>1869-5582</issn><issn>1869-5590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEtPYC3CqxDlgO2nScEMTA6RJXOAcpWk2Nm1tSTbQ3p6MIrjhg21Z_29bH2OXCNcIoG8SCtLEAQ0HEEZyPGEjrJThZWng9Lev6JxNUlpDDgVClnLE5Gzj-n7VLovPYwptiMtD8ebiR0i7PLktXIhdc2jdduULl_rgd-mCnS3cJoXJTx2z19n9y_SRz58fnqZ3c-5JSOSqFJ6UxDoAymCMrysCXTXYUOOIBNaSamOqhfSq0tQoVF5pV4baOO2VE2N2NeztY_e-zw_ZdbePbT5pSYJRWpHErKJB5WOXUgwL28fV1sWDRbBHQHYAZDMg-w3IHk1iMKUsbpch_q3-x_UFmz1m1w</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Geissler, W.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3462-1070</orcidid></search><sort><creationdate>20200601</creationdate><title>Flapping wing energy harvesting: aerodynamic aspects</title><author>Geissler, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2341-653c2641be014e99cb82078d1d2da2231b42b998f4c6872d616c67a5eb9a7c6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Aerospace Technology and Astronautics</topic><topic>Amplitudes</topic><topic>Energy</topic><topic>Energy flow</topic><topic>Energy harvesting</topic><topic>Engineering</topic><topic>Flapping wings</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Insects</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Thrust</topic><topic>Unity</topic><topic>Vortices</topic><toplevel>online_resources</toplevel><creatorcontrib>Geissler, W.</creatorcontrib><collection>CrossRef</collection><jtitle>CEAS aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geissler, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flapping wing energy harvesting: aerodynamic aspects</atitle><jtitle>CEAS aeronautical journal</jtitle><stitle>CEAS Aeronaut J</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>11</volume><issue>2</issue><spage>379</spage><epage>389</epage><pages>379-389</pages><issn>1869-5582</issn><eissn>1869-5590</eissn><abstract>Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices (LEV’s). Thrust production means that energy is transferred from the flapping system into the fluid. In a similar way it can be achieved that energy flows from the fluid into the flapping system, i.e. fluid energy may be harvested. Responsible for the direction of energy flow is the ratio of pitching amplitude versus amplitude of the induced incidence of the plunging motion. If this ratio is smaller than unity thrust energy is produced; if it is larger than unity energy is transferred into the flapping system. In the present paper, emphasis is placed on the detailed study of the aerodynamic effects and on some ideas of optimization of energy harvesting of a flapping system. It will be shown that similar to the thrust production mode also in the energy harvesting mode, the influence of LEV’s is of major concern. The control of these vortices by airfoil deformation is shown to be beneficial for optimizing the efficiency of energy harvesting.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13272-019-00394-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3462-1070</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1869-5582
ispartof CEAS aeronautical journal, 2020-06, Vol.11 (2), p.379-389
issn 1869-5582
1869-5590
language eng
recordid cdi_proquest_journals_2409676241
source SpringerLink Journals - AutoHoldings
subjects Aerodynamic forces
Aerodynamics
Aerospace Technology and Astronautics
Amplitudes
Energy
Energy flow
Energy harvesting
Engineering
Flapping wings
Fluid dynamics
Fluid flow
Insects
Optimization
Original Paper
Thrust
Unity
Vortices
title Flapping wing energy harvesting: aerodynamic aspects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flapping%20wing%20energy%20harvesting:%20aerodynamic%20aspects&rft.jtitle=CEAS%20aeronautical%20journal&rft.au=Geissler,%20W.&rft.date=2020-06-01&rft.volume=11&rft.issue=2&rft.spage=379&rft.epage=389&rft.pages=379-389&rft.issn=1869-5582&rft.eissn=1869-5590&rft_id=info:doi/10.1007/s13272-019-00394-1&rft_dat=%3Cproquest_cross%3E2409676241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409676241&rft_id=info:pmid/&rfr_iscdi=true