Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications

Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This mini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2020-06, Vol.132 (25), p.9940-9951
Hauptverfasser: Suzuki, Satoshi, Sasaki, Shunsuke, Sairi, Amir Sharidan, Iwai, Riki, Tang, Ben Zhong, Konishi, Gen‐ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9951
container_issue 25
container_start_page 9940
container_title Angewandte Chemie
container_volume 132
creator Suzuki, Satoshi
Sasaki, Shunsuke
Sairi, Amir Sharidan
Iwai, Riki
Tang, Ben Zhong
Konishi, Gen‐ichi
description Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10‐bis(N,N‐dialkylamino)anthracene (BDAA) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non‐radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non‐fluorescent (CI:low) molecules [control of conical intersection accessibility (CCIA)]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples. What is essential in the aggregation‐induced emission (AIE) mechanism? This question is addressed by using the photophysical processes associated with 9,10‐bis(N,N‐dialkylamino)anthracene as a case study. The AIE phenomenon requires control of the non‐radiative decay (deactivation) pathway, that is, controlling the conical intersection (CI) on the potential energy surface enables the formation of fluorescent molecules (CI high) and non‐fluorescent (CI low) molecules separately.
doi_str_mv 10.1002/ange.202000940
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409513104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409513104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2020-e4cb32139dde5c5fb0d5d6420fa280dbac7efd989a85613002b8b37b9a1d28b23</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiTjk7SROzRW0olSroALPl2E5wlTrBbqm68Qg8I09C0iIYme50-v473YfQNYERAaC3wlZ6RIECAIvgBA1ITEkQJnFyigYAURSkNGLn6ML7VceMacIGyC-dsdK0tfa4KXFWVU5XYmMa-_XxObdqK7XC-dp4343u8FR7U9menGohN-b9gOKl2LzuxN7jsnE4U-_C9rFsnlfaeixs17dtbeSB9pforBS111c_dYhe7vPnyUOweJrNJ9kikP0XgY5kEVISMqV0LOOyABWrcUShFDQFVQiZ6FKxlIk0HpOwU1CkRZgUTBBF04KGQ3Rz3Nu65m2r_Yavmq2z3UlOI2AxCQlEHTU6UtI13jtd8taZtXB7ToD3Ynkvlv-K7QLsGNiZWu__oXn2OMv_st_e1H6O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409513104</pqid></control><display><type>article</type><title>Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications</title><source>Wiley Journals</source><creator>Suzuki, Satoshi ; Sasaki, Shunsuke ; Sairi, Amir Sharidan ; Iwai, Riki ; Tang, Ben Zhong ; Konishi, Gen‐ichi</creator><creatorcontrib>Suzuki, Satoshi ; Sasaki, Shunsuke ; Sairi, Amir Sharidan ; Iwai, Riki ; Tang, Ben Zhong ; Konishi, Gen‐ichi</creatorcontrib><description>Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10‐bis(N,N‐dialkylamino)anthracene (BDAA) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non‐radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non‐fluorescent (CI:low) molecules [control of conical intersection accessibility (CCIA)]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples. What is essential in the aggregation‐induced emission (AIE) mechanism? This question is addressed by using the photophysical processes associated with 9,10‐bis(N,N‐dialkylamino)anthracene as a case study. The AIE phenomenon requires control of the non‐radiative decay (deactivation) pathway, that is, controlling the conical intersection (CI) on the potential energy surface enables the formation of fluorescent molecules (CI high) and non‐fluorescent (CI low) molecules separately.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202000940</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Active control ; Agglomeration ; aggregation-induced emission ; Anthracene ; bis(dialkylamino)anthracene ; Chemistry ; control of conical intersection accessibility ; Deactivation ; Design ; Emission ; Fluorescence ; Photochemistry ; Potential energy ; Principles ; Quantum chemistry</subject><ispartof>Angewandte Chemie, 2020-06, Vol.132 (25), p.9940-9951</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2020-e4cb32139dde5c5fb0d5d6420fa280dbac7efd989a85613002b8b37b9a1d28b23</citedby><cites>FETCH-LOGICAL-c2020-e4cb32139dde5c5fb0d5d6420fa280dbac7efd989a85613002b8b37b9a1d28b23</cites><orcidid>0000-0002-0293-964X ; 0000-0001-8358-1629 ; 0000-0002-6322-0364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202000940$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202000940$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Suzuki, Satoshi</creatorcontrib><creatorcontrib>Sasaki, Shunsuke</creatorcontrib><creatorcontrib>Sairi, Amir Sharidan</creatorcontrib><creatorcontrib>Iwai, Riki</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><creatorcontrib>Konishi, Gen‐ichi</creatorcontrib><title>Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications</title><title>Angewandte Chemie</title><description>Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10‐bis(N,N‐dialkylamino)anthracene (BDAA) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non‐radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non‐fluorescent (CI:low) molecules [control of conical intersection accessibility (CCIA)]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples. What is essential in the aggregation‐induced emission (AIE) mechanism? This question is addressed by using the photophysical processes associated with 9,10‐bis(N,N‐dialkylamino)anthracene as a case study. The AIE phenomenon requires control of the non‐radiative decay (deactivation) pathway, that is, controlling the conical intersection (CI) on the potential energy surface enables the formation of fluorescent molecules (CI high) and non‐fluorescent (CI low) molecules separately.</description><subject>Active control</subject><subject>Agglomeration</subject><subject>aggregation-induced emission</subject><subject>Anthracene</subject><subject>bis(dialkylamino)anthracene</subject><subject>Chemistry</subject><subject>control of conical intersection accessibility</subject><subject>Deactivation</subject><subject>Design</subject><subject>Emission</subject><subject>Fluorescence</subject><subject>Photochemistry</subject><subject>Potential energy</subject><subject>Principles</subject><subject>Quantum chemistry</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQhi0EEqWwMltiTjk7SROzRW0olSroALPl2E5wlTrBbqm68Qg8I09C0iIYme50-v473YfQNYERAaC3wlZ6RIECAIvgBA1ITEkQJnFyigYAURSkNGLn6ML7VceMacIGyC-dsdK0tfa4KXFWVU5XYmMa-_XxObdqK7XC-dp4343u8FR7U9menGohN-b9gOKl2LzuxN7jsnE4U-_C9rFsnlfaeixs17dtbeSB9pforBS111c_dYhe7vPnyUOweJrNJ9kikP0XgY5kEVISMqV0LOOyABWrcUShFDQFVQiZ6FKxlIk0HpOwU1CkRZgUTBBF04KGQ3Rz3Nu65m2r_Yavmq2z3UlOI2AxCQlEHTU6UtI13jtd8taZtXB7ToD3Ynkvlv-K7QLsGNiZWu__oXn2OMv_st_e1H6O</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Suzuki, Satoshi</creator><creator>Sasaki, Shunsuke</creator><creator>Sairi, Amir Sharidan</creator><creator>Iwai, Riki</creator><creator>Tang, Ben Zhong</creator><creator>Konishi, Gen‐ichi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0001-8358-1629</orcidid><orcidid>https://orcid.org/0000-0002-6322-0364</orcidid></search><sort><creationdate>20200615</creationdate><title>Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications</title><author>Suzuki, Satoshi ; Sasaki, Shunsuke ; Sairi, Amir Sharidan ; Iwai, Riki ; Tang, Ben Zhong ; Konishi, Gen‐ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2020-e4cb32139dde5c5fb0d5d6420fa280dbac7efd989a85613002b8b37b9a1d28b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Agglomeration</topic><topic>aggregation-induced emission</topic><topic>Anthracene</topic><topic>bis(dialkylamino)anthracene</topic><topic>Chemistry</topic><topic>control of conical intersection accessibility</topic><topic>Deactivation</topic><topic>Design</topic><topic>Emission</topic><topic>Fluorescence</topic><topic>Photochemistry</topic><topic>Potential energy</topic><topic>Principles</topic><topic>Quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Satoshi</creatorcontrib><creatorcontrib>Sasaki, Shunsuke</creatorcontrib><creatorcontrib>Sairi, Amir Sharidan</creatorcontrib><creatorcontrib>Iwai, Riki</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><creatorcontrib>Konishi, Gen‐ichi</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Satoshi</au><au>Sasaki, Shunsuke</au><au>Sairi, Amir Sharidan</au><au>Iwai, Riki</au><au>Tang, Ben Zhong</au><au>Konishi, Gen‐ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-06-15</date><risdate>2020</risdate><volume>132</volume><issue>25</issue><spage>9940</spage><epage>9951</epage><pages>9940-9951</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10‐bis(N,N‐dialkylamino)anthracene (BDAA) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non‐radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non‐fluorescent (CI:low) molecules [control of conical intersection accessibility (CCIA)]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples. What is essential in the aggregation‐induced emission (AIE) mechanism? This question is addressed by using the photophysical processes associated with 9,10‐bis(N,N‐dialkylamino)anthracene as a case study. The AIE phenomenon requires control of the non‐radiative decay (deactivation) pathway, that is, controlling the conical intersection (CI) on the potential energy surface enables the formation of fluorescent molecules (CI high) and non‐fluorescent (CI low) molecules separately.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202000940</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0001-8358-1629</orcidid><orcidid>https://orcid.org/0000-0002-6322-0364</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2020-06, Vol.132 (25), p.9940-9951
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2409513104
source Wiley Journals
subjects Active control
Agglomeration
aggregation-induced emission
Anthracene
bis(dialkylamino)anthracene
Chemistry
control of conical intersection accessibility
Deactivation
Design
Emission
Fluorescence
Photochemistry
Potential energy
Principles
Quantum chemistry
title Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principles%20of%20Aggregation%E2%80%90Induced%20Emission:%20Design%20of%20Deactivation%20Pathways%20for%20Advanced%20AIEgens%20and%20Applications&rft.jtitle=Angewandte%20Chemie&rft.au=Suzuki,%20Satoshi&rft.date=2020-06-15&rft.volume=132&rft.issue=25&rft.spage=9940&rft.epage=9951&rft.pages=9940-9951&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202000940&rft_dat=%3Cproquest_cross%3E2409513104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409513104&rft_id=info:pmid/&rfr_iscdi=true