Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications
Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This mini...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2020-06, Vol.132 (25), p.9940-9951 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9951 |
---|---|
container_issue | 25 |
container_start_page | 9940 |
container_title | Angewandte Chemie |
container_volume | 132 |
creator | Suzuki, Satoshi Sasaki, Shunsuke Sairi, Amir Sharidan Iwai, Riki Tang, Ben Zhong Konishi, Gen‐ichi |
description | Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10‐bis(N,N‐dialkylamino)anthracene (BDAA) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non‐radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non‐fluorescent (CI:low) molecules [control of conical intersection accessibility (CCIA)]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples.
What is essential in the aggregation‐induced emission (AIE) mechanism? This question is addressed by using the photophysical processes associated with 9,10‐bis(N,N‐dialkylamino)anthracene as a case study. The AIE phenomenon requires control of the non‐radiative decay (deactivation) pathway, that is, controlling the conical intersection (CI) on the potential energy surface enables the formation of fluorescent molecules (CI high) and non‐fluorescent (CI low) molecules separately. |
doi_str_mv | 10.1002/ange.202000940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409513104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409513104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2020-e4cb32139dde5c5fb0d5d6420fa280dbac7efd989a85613002b8b37b9a1d28b23</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiTjk7SROzRW0olSroALPl2E5wlTrBbqm68Qg8I09C0iIYme50-v473YfQNYERAaC3wlZ6RIECAIvgBA1ITEkQJnFyigYAURSkNGLn6ML7VceMacIGyC-dsdK0tfa4KXFWVU5XYmMa-_XxObdqK7XC-dp4343u8FR7U9menGohN-b9gOKl2LzuxN7jsnE4U-_C9rFsnlfaeixs17dtbeSB9pforBS111c_dYhe7vPnyUOweJrNJ9kikP0XgY5kEVISMqV0LOOyABWrcUShFDQFVQiZ6FKxlIk0HpOwU1CkRZgUTBBF04KGQ3Rz3Nu65m2r_Yavmq2z3UlOI2AxCQlEHTU6UtI13jtd8taZtXB7ToD3Ynkvlv-K7QLsGNiZWu__oXn2OMv_st_e1H6O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409513104</pqid></control><display><type>article</type><title>Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications</title><source>Wiley Journals</source><creator>Suzuki, Satoshi ; Sasaki, Shunsuke ; Sairi, Amir Sharidan ; Iwai, Riki ; Tang, Ben Zhong ; Konishi, Gen‐ichi</creator><creatorcontrib>Suzuki, Satoshi ; Sasaki, Shunsuke ; Sairi, Amir Sharidan ; Iwai, Riki ; Tang, Ben Zhong ; Konishi, Gen‐ichi</creatorcontrib><description>Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10‐bis(N,N‐dialkylamino)anthracene (BDAA) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non‐radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non‐fluorescent (CI:low) molecules [control of conical intersection accessibility (CCIA)]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples.
What is essential in the aggregation‐induced emission (AIE) mechanism? This question is addressed by using the photophysical processes associated with 9,10‐bis(N,N‐dialkylamino)anthracene as a case study. The AIE phenomenon requires control of the non‐radiative decay (deactivation) pathway, that is, controlling the conical intersection (CI) on the potential energy surface enables the formation of fluorescent molecules (CI high) and non‐fluorescent (CI low) molecules separately.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202000940</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Active control ; Agglomeration ; aggregation-induced emission ; Anthracene ; bis(dialkylamino)anthracene ; Chemistry ; control of conical intersection accessibility ; Deactivation ; Design ; Emission ; Fluorescence ; Photochemistry ; Potential energy ; Principles ; Quantum chemistry</subject><ispartof>Angewandte Chemie, 2020-06, Vol.132 (25), p.9940-9951</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2020-e4cb32139dde5c5fb0d5d6420fa280dbac7efd989a85613002b8b37b9a1d28b23</citedby><cites>FETCH-LOGICAL-c2020-e4cb32139dde5c5fb0d5d6420fa280dbac7efd989a85613002b8b37b9a1d28b23</cites><orcidid>0000-0002-0293-964X ; 0000-0001-8358-1629 ; 0000-0002-6322-0364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202000940$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202000940$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Suzuki, Satoshi</creatorcontrib><creatorcontrib>Sasaki, Shunsuke</creatorcontrib><creatorcontrib>Sairi, Amir Sharidan</creatorcontrib><creatorcontrib>Iwai, Riki</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><creatorcontrib>Konishi, Gen‐ichi</creatorcontrib><title>Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications</title><title>Angewandte Chemie</title><description>Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10‐bis(N,N‐dialkylamino)anthracene (BDAA) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non‐radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non‐fluorescent (CI:low) molecules [control of conical intersection accessibility (CCIA)]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples.
What is essential in the aggregation‐induced emission (AIE) mechanism? This question is addressed by using the photophysical processes associated with 9,10‐bis(N,N‐dialkylamino)anthracene as a case study. The AIE phenomenon requires control of the non‐radiative decay (deactivation) pathway, that is, controlling the conical intersection (CI) on the potential energy surface enables the formation of fluorescent molecules (CI high) and non‐fluorescent (CI low) molecules separately.</description><subject>Active control</subject><subject>Agglomeration</subject><subject>aggregation-induced emission</subject><subject>Anthracene</subject><subject>bis(dialkylamino)anthracene</subject><subject>Chemistry</subject><subject>control of conical intersection accessibility</subject><subject>Deactivation</subject><subject>Design</subject><subject>Emission</subject><subject>Fluorescence</subject><subject>Photochemistry</subject><subject>Potential energy</subject><subject>Principles</subject><subject>Quantum chemistry</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQhi0EEqWwMltiTjk7SROzRW0olSroALPl2E5wlTrBbqm68Qg8I09C0iIYme50-v473YfQNYERAaC3wlZ6RIECAIvgBA1ITEkQJnFyigYAURSkNGLn6ML7VceMacIGyC-dsdK0tfa4KXFWVU5XYmMa-_XxObdqK7XC-dp4343u8FR7U9menGohN-b9gOKl2LzuxN7jsnE4U-_C9rFsnlfaeixs17dtbeSB9pforBS111c_dYhe7vPnyUOweJrNJ9kikP0XgY5kEVISMqV0LOOyABWrcUShFDQFVQiZ6FKxlIk0HpOwU1CkRZgUTBBF04KGQ3Rz3Nu65m2r_Yavmq2z3UlOI2AxCQlEHTU6UtI13jtd8taZtXB7ToD3Ynkvlv-K7QLsGNiZWu__oXn2OMv_st_e1H6O</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Suzuki, Satoshi</creator><creator>Sasaki, Shunsuke</creator><creator>Sairi, Amir Sharidan</creator><creator>Iwai, Riki</creator><creator>Tang, Ben Zhong</creator><creator>Konishi, Gen‐ichi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0001-8358-1629</orcidid><orcidid>https://orcid.org/0000-0002-6322-0364</orcidid></search><sort><creationdate>20200615</creationdate><title>Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications</title><author>Suzuki, Satoshi ; Sasaki, Shunsuke ; Sairi, Amir Sharidan ; Iwai, Riki ; Tang, Ben Zhong ; Konishi, Gen‐ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2020-e4cb32139dde5c5fb0d5d6420fa280dbac7efd989a85613002b8b37b9a1d28b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Agglomeration</topic><topic>aggregation-induced emission</topic><topic>Anthracene</topic><topic>bis(dialkylamino)anthracene</topic><topic>Chemistry</topic><topic>control of conical intersection accessibility</topic><topic>Deactivation</topic><topic>Design</topic><topic>Emission</topic><topic>Fluorescence</topic><topic>Photochemistry</topic><topic>Potential energy</topic><topic>Principles</topic><topic>Quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Satoshi</creatorcontrib><creatorcontrib>Sasaki, Shunsuke</creatorcontrib><creatorcontrib>Sairi, Amir Sharidan</creatorcontrib><creatorcontrib>Iwai, Riki</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><creatorcontrib>Konishi, Gen‐ichi</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Satoshi</au><au>Sasaki, Shunsuke</au><au>Sairi, Amir Sharidan</au><au>Iwai, Riki</au><au>Tang, Ben Zhong</au><au>Konishi, Gen‐ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-06-15</date><risdate>2020</risdate><volume>132</volume><issue>25</issue><spage>9940</spage><epage>9951</epage><pages>9940-9951</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Twenty years ago, the concept of aggregation‐induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10‐bis(N,N‐dialkylamino)anthracene (BDAA) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non‐radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non‐fluorescent (CI:low) molecules [control of conical intersection accessibility (CCIA)]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples.
What is essential in the aggregation‐induced emission (AIE) mechanism? This question is addressed by using the photophysical processes associated with 9,10‐bis(N,N‐dialkylamino)anthracene as a case study. The AIE phenomenon requires control of the non‐radiative decay (deactivation) pathway, that is, controlling the conical intersection (CI) on the potential energy surface enables the formation of fluorescent molecules (CI high) and non‐fluorescent (CI low) molecules separately.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202000940</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0001-8358-1629</orcidid><orcidid>https://orcid.org/0000-0002-6322-0364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2020-06, Vol.132 (25), p.9940-9951 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2409513104 |
source | Wiley Journals |
subjects | Active control Agglomeration aggregation-induced emission Anthracene bis(dialkylamino)anthracene Chemistry control of conical intersection accessibility Deactivation Design Emission Fluorescence Photochemistry Potential energy Principles Quantum chemistry |
title | Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principles%20of%20Aggregation%E2%80%90Induced%20Emission:%20Design%20of%20Deactivation%20Pathways%20for%20Advanced%20AIEgens%20and%20Applications&rft.jtitle=Angewandte%20Chemie&rft.au=Suzuki,%20Satoshi&rft.date=2020-06-15&rft.volume=132&rft.issue=25&rft.spage=9940&rft.epage=9951&rft.pages=9940-9951&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202000940&rft_dat=%3Cproquest_cross%3E2409513104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409513104&rft_id=info:pmid/&rfr_iscdi=true |